
Atmiya Infotech

JAVA

“Aim at the stars, even if you fall, you will fall on the moon…..”

-By Mr. Bhavin Rawal

Yogidham, kalawad road, RAJKOT 1

Atmiya Infotech

JAVA

Introduction..7
History... 8
Characteristics.. 10

OOP.. 10
Simple... 10
Portable.. 11
Robust .. 11
Multithreaded.. 12
Architecture-Neutral .. 12
Compiled – Interpreted .. 13
High Performance... 13
Distributed... 13
Dynamic ... 13

Java Virtual Machine .. 14
2.Language Fundamental..14

First Program... 14
Compiling a program ... 16

Compile the Source File.. 16
Running a program... 18

In the same directory, enter at the prompt: .. 18
Now you should see:... 18

Command line argument.. 18
Accepting user inputs ... 19

Datatypes .. 19
Integer Types... 19
Floating-Point Types... 22
Characters ... 23
Boolean... 24
Literals ... 24

Variables ... 25
Declaration... 25
Dynamic Initialization .. 26
Scope... 28
Automatic Type Promotion in Expression ... 30

Operators .. 31
Arithmetic.. 31
Relational and Logical.. 33
Assignment... 33
Conditional / Ternary... 35
Increment – Decrement .. 36
Bitwise Shift... 37
Operator Precedence .. 38

Yogidham, kalawad road, RAJKOT 2

Atmiya Infotech

Control Statements .. 40
If … else ... 40
Switch … case.. 41
Loops .. 42
Nested Loops and Labeled Loops... 46
Jump Statements... 48
Arrays... 51

3. Implementing Classes ..55
Basics... 55
General Form of a Class.. 56
Creating Classes & their Objects ... 57

Object ... 59
Assigning Object Reference Variable .. 60
Methods... 61
Constructors ... 62
The this keyword.. 64
Garbage Collection .. 65
Overloading .. 65
Understanding final & static... 66
Nested / Inner Classes.. 67

4. Inheritance..69
Basics... 69
extends keyword declares that your class is a subclass of another 70
Modifiers... 73

The static Modifier.. 74
The final Modifier ... 75
The synchronized Modifier .. 75
The native Modifier .. 76

The super keyword... 76
Constructor’s hierarchy .. 77
Overriding .. 79

Methods.. 79
Calling the Overridden Method .. 80
Variables .. 80

Abstract Classes ... 81
Abstract Method .. 82
Using final and Static ... 83

5.Packages & Interfaces ..84
Packages.. 84

Defining a package.. 84
Interfaces .. 86

Basics.. 86
Interface References ... 86
Applying Interfaces... 87

Yogidham, kalawad road, RAJKOT 3

Atmiya Infotech

Interface variables .. 90
Interface Inheritance .. 90

Exception Handling..91
Basics... 91
Exception & Error Classes.. 92
Class Throwable... 92

Errors ... 92
Exceptions.. 93
Checked Exceptions .. 93

Using try … catch .. 94
Multiple Catch Statements.. 97
Throw, Throws & Finally Statements ... 97

The finally Block.. 99
Java’s Built in Exception... 100

Java.lang.* ... 101
Interfaces .. 101

Cloneable ... 101
Comparable ... 101
Runnable.. 102

Classes ... 103
Object ... 103
Number .. 104
Wrapper Classes ... 104
Class ... 106
Math ... 106
String and StringBuffer.. 108
String Access Methods.. 109
String Access Methods.. 109
String Conversion and Generation.. 110
System .. 113
Thread.. 115
ThreadGroup... 116
Throwable.. 116
The Error Class... 116
The Exception Class.. 117

Java.util.* ... 117
Basics... 117
Interfaces .. 118

Collection ... 118
List.. 119
Set ... 119
SortedSet.. 119
Map... 119
SortedMap ... 120
Enumeration and Iterator.. 120

Yogidham, kalawad road, RAJKOT 4

Atmiya Infotech

Classes ... 120
All Implementing Classes of Collection & Map... 120
Properties... 130
StringTokenizer... 133
Date... 135
Calendar... 137
Random.. 139

Multithreading .. 140
Basics... 140
Customizing a Thread's run Method... 141

Subclassing Thread and Overriding run .. 141
Implementing the Runnable Interface .. 144
Deciding to Use the Runnable Interface.. 145

The Life Cycle of a Thread ... 146
Creating a Thread... 147
Starting a Thread.. 148
Making a Thread Not Runnable.. 148
Stopping a Thread... 149
The isAlive Method... 151

Understanding Thread Priority.. 151
Time-Slicing... 152
Summary.. 155

Synchronizing Threads.. 155
The Producer/Consumer Example... 156

The Main Program ... 160
The Output .. 161

Locking an Object.. 161
Reaquiring a Lock ... 163
Using the notifyAll and wait Methods ... 164
Avoiding Starvation and Deadlock .. 167
Grouping Threads.. 168

The Default Thread Group .. 169
Creating a Thread Explicitly in a Group.. 169
Getting a Thread's Group.. 170
The ThreadGroup Class... 170
Collection Management Methods.. 170
Methods that Operate on the Group... 171
Methods that Operate on All Threads within a Group... 174
Access Restriction Methods ... 174

Summary... 176
7. IO .. 177

Basics... 177
Character Streams.. 178
Byte Streams.. 179

Understanding the I/O Superclasses .. 180

Yogidham, kalawad road, RAJKOT 5

Atmiya Infotech

Using the Streams .. 181
Understanding the Implementation of various IO classes 184

FileInputStream, FileOutputStream, FileReader, FileWriter...................................... 184
ByteArrayInputStream, ByteArrayOutputStream ... 187
InputStreamReader, OutputStreamWriter ... 188
BufferedInputStream, BufferedOutputStream, BufferedReader, BufferedWriter ... 189
DataInputStream, DataOutputStream ... 191
SequenceInputStream... 194
CharArrayReader, CharArrayWriter.. 195
File, RandomAccessFile.. 197
PrintWriter.. 198
PushbackInputStream, PushbackReader... 199
ObjectInputStream, ObjectOutputStream... 200

AWT Fundamentals.. 202
Graphical User Interfaces ... 202
AWT Basics .. 202
Applications versus Applets.. 202
Basic GUI Logic ... 203
A Simple Example.. 203
AWT Components ... 205

Buttons ... 205
Canvas.. 206
Checkbox ... 207
CheckboxGroup .. 208
Choice... 209
Label... 209
List.. 210
Scrollbar... 211
TextField .. 211
TextArea .. 212
Common Component Methods.. 214

Containers... 216
Common Container Methods... 216
ScrollPane .. 217

Event Handling .. 218
Events ... 218
AWTEvent ... 220
Event Sources .. 221
Event Listeners.. 222
Summary of Listener interfaces and their methods .. 223
Event Adapters.. 224
Adapters Example... 226

Applications and Menus.. 227
GUI-based Applications ... 227
Applications: Dialog Boxes... 230

Yogidham, kalawad road, RAJKOT 6

Atmiya Infotech

Applications: Menus ... 233
Menu Shortcuts ... 237
Pop-up Menus.. 238

APPLET... 240
Overview of Applets... 240

A Simple Applet .. 241
Loading the Applet ... 243
Leaving and Returning to the Applet's Page.. 243
Reloading the Applet .. 243
Quitting the Browser .. 244
Summary.. 244

Methods for Milestones ... 244
Methods for Drawing and Event Handling ... 246
Methods for Adding UI Components... 247

Pre-Made UI Components ... 248
Methods for Using UI Components in Applets .. 249
Adding a Non-Editable Text Field to the Simple Applet .. 249

Using the APPLET Tag... 252
Specifying Parameters .. 252
Specifying Alternate HTML Code and Text .. 254
Specifying the Applet Directory .. 256
<APPLET> Tag Attributes .. 257

What Applets Can and Can't Do.. 260
Security Restriction .. 260
Applet Capabilities.. 261

Network Programming... 262
The Internet Protocol Suite... 262

The Internet... 262
Connection-Oriented Versus Connectionless Communication 265

Sockets and Client/Server Communication... 266
Overview of java.net ... 268
The InetAddress Class... 268
The Socket Class... 270
The ServerSocket Class... 273
The DatagramSocket Class.. 277
The DatagramPacket Class.. 278
URL .. 282

Introduction

Yogidham, kalawad road, RAJKOT 7

Atmiya Infotech

History
Few years ago, James Gosling was part of Green, an isolated research
project at Sun that was studying how to put computers into everyday
household items. The researchers wanted to make smart appliances such
as thoughtful toasters and lucid lamps. The group also wanted these
devices to communicate with each other. With this vision, the Greens
built a device called Star7. This was a handheld remote control operated
by touching animated objects on the screen. A Star7 user could navigate
by fingertip.

The most remarkable ability of the Star7 device was how it
communicated with other Star7 devices. An on-screen object could be
passed from one device to another. The original plan was for the Star7
operating system to be developed in C++. But Gosling didn’t find it
feasible, so he holed up in his office and wrote a new language that was
better for the purposes of the Green project than C++. He called the
language Oak in honor of a tree that could be seen from his office
window.

The Green project had an impressive demonstration device, operating
system, and programming language. Sun's higher-ups gave the green
signal and the project was incorporated as FirstPerson in November
1992. But unfortunately this project failed.

Marc Andreesen, an undergraduate student working at the National
Center for Supercomputing Applications, developed the first visual
World Wide Web browser, Mosaic 1.0. This event had sparked an
international phenomenon, and the Web was rapidly becoming a mass
medium.

In mid-1994, the folks who stuck with Oak found their reason for being:
the World Wide Web. When Oak was created, the Web was a little-
known service bouncing around the high-energy physics community.
The Oak technology was well suited for this medium, especially because
of its ability to run on multiple platforms. More importantly, it

Yogidham, kalawad road, RAJKOT 8

Atmiya Infotech

introduced something that wasn't available anywhere else-programs that
could be run on user's computers safely from a Web page.

Patrick Naughton and Jonathan Payne finished WebRunner, a Web
browser that brought back the star of the Star7, Duke. Sun realized it had
something promising on its hands, but soon found that Oak could not be
trademarked because a product was already using the name.

After brainstorming sessions in January 1995 to supplant the Oak name,
Java won for the language and HotJava replaced WebRunner as the
browser's name. Java was the name chosen because it sounded the
coolest. It won out over DNA, Silk, Ruby, and WRL (WebRunner
Language).

The project now had a cool name, a cool new purpose, and a HotJava
browser to show it off. On March 23, 1995, it attracted a cool new
admirer: that Andreesen kid. In a front-page story, the San Jose Mercury
News reported that Sun was working on a project to make Web pages
"as lively as a CD-ROM." The story included the following quote from
Andreesen, who had become a vice president at Netscape (and had also
become a self-contained Bill Gates starter kit): "What these guys are
doing is undeniably, absolutely new."

The phenomenon was on. Netscape licensed the Java language for use in
its browser a few months after the article ran, putting the language in
front of millions of Netscape users. The first beta release of Java was
made available for download in November 1995. Sun made a
developer's kit and the source code for its product freely available to
anyone who wanted it-and by that time, thousands of people and
companies did.

Thus, SUN gifted a new object-oriented, made-for-the-Internet
programming language JAVA.

Yogidham, kalawad road, RAJKOT 9

Atmiya Infotech

Characteristics

OOP

A software design method that models the characteristics of abstract
or real objects using classes and objects.

Java deals with classes and objects, pure and simple. They aren't just
more data structures that are available to the programmer-they are the
basis for the entire programming language.

In Java, classes and objects are at the center of the language. Everything
else revolves around them. You can't declare functions and procedures.
They don't exist. You can't use structures or unions. Java provides all the
luxuries of object-oriented programming: class hierarchy, inheritance,
encapsulation, and polymorphism-in a context that is truly useful and
efficient. Once you have begun developing software in Java, you have
two choices:

1. Build on the classes you have developed, thereby reusing them.
2. Rewrite your software from scratch.

With Java, the temptation to start from scratch is no longer appealing.
Java's object-oriented structure forces you to develop more useful, and
much simpler software.

Simple
Java was modeled after C and C++. The object-oriented approach, and
most of Java's syntax, is adapted from C++. Programmers who are
familiar with that language (or with C) will have a much easier time
learning Java because of the common features.
Secure
Memory management occurs automatically in Java--programmers do not
have to write their own garbage- collection routines to free up memory.

Yogidham, kalawad road, RAJKOT 10

Atmiya Infotech

Because Java does not use pointers to directly reference memory
locations, as is prevalent in C and C++, Java has a great deal of control
over the code that exists within the Java environment.
It was anticipated that Java applications would run on the Internet and
that they could dynamically incorporate or execute code found at remote
locations on the Internet. Because of this, the developers of Java feared
that Java compiler might generate Java byte codes with the intent of
bypassing Java's runtime security. This led to the concept of a byte-code
verifier. The byte-code verifier examines all incoming code to ensure
that the code plays by the rules and is safe to execute. In addition to
other properties, the byte code verifier ensures the following:
No pointers are forged.
No illegal object casts are performed.
There will be no operand stack overflows or underflows.
All parameters passed to functions are of the proper types.
Rules regarding private, protected, and public class membership are
followed.

Portable

Java code is portable. It was an important design goal of Java that it be
portable so that as new architectures (due to hardware, operating system,
or both) are developed, the Java environment could be ported to them.

In Java, all primitive types (integers, longs, floats, doubles, and so on)
are of defined sizes, regardless of the machine or operating system on
which the program is run. This is in direct contrast to languages like C
and C++ that leave the sizes of primitive types up to the compiler and
developer.

Additionally, Java is portable because the compiler itself is written in
Java.

Robust

Yogidham, kalawad road, RAJKOT 11

Atmiya Infotech

 Java was created as a strongly typed language. Data type issues and
problems are resolved at compile-time, and implicit casts of a variable
from one type to another are not allowed.

Memory management has been simplified in Java in two ways. First,
Java does not support direct pointer manipulation or arithmetic. This
makes it impossible for a Java program to overwrite memory or corrupt
data. Second, Java uses runtime garbage collection instead of explicit
freeing of memory. In languages like C++, it is necessary to delete or
free memory once the program has finished with it.

Multithreaded

Writing a computer program that only does a single thing at a time is an
artificial constraint that we've lived with in most programming
languages. With Java, we no longer have to live with this limitation.
Support for multiple, synchronized threads is built directly into the Java
language and runtime environment.

Synchronized threads are extremely useful in creating distributed,
network-aware applications. Such an application may be communicating
with a remote server in one thread while interacting with a user in a
different thread.

Architecture-Neutral

It is not easy to write an application that can be used on Windows NT,
UNIX, and a Macintosh. And it's getting more complicated with the
move of Windows NT to non-Intel CPU architectures.

Java takes a different approach. Because the Java compiler creates byte
code instructions that are subsequently interpreted by the Java

Yogidham, kalawad road, RAJKOT 12

Atmiya Infotech

interpreter, architecture neutrality is achieved in the implementation of
the Java interpreter for each new architecture.

Compiled – Interpreted

The Java compiler (javac) is the component of the Java Developer's
Kit used to transform Java source code files into bytecode executables
that can be run in the Java runtime system . It is the job of the Java
compiler to process Java source code files and create executable Java
bytecode classes from them. Executable bytecode class files have the
extension .class, and they represent a Java class in its useable form.

The Java interpreter used to execute Java applications. The interpreter
translates byte codes directly into program actions.

High Performance

For all but the simplest or most infrequently used applications,
performance is always a consideration for most applications, including
graphics-intensive ones such as are commonly found on the World Wide
Web, the performance of Java is more than adequate.

Distributed

Java facilitates the building of distributed applications by a collection of
classes for use in networked applications. By using Java's URL
(Uniform Resource Locator) class, an application can easily access a
remote server. Classes also are provided for establishing socket-level
connections.

Dynamic

Yogidham, kalawad road, RAJKOT 13

Atmiya Infotech

Because it is interpreted, Java is an extremely dynamic language. At
runtime, the Java environment can extend itself by linking in classes that
may be located on remote servers on a network (for example, the
Internet)
.

At runtime, the Java interpreter performs name resolution while linking
in the necessary classes. The Java interpreter is also responsible for
determining the placement of objects in memory. These two features of
the Java interpreter solve the problem of changing the definition of a
class used by other classes

Java Virtual Machine
When Java was created, the goal was to create a machine-independent
programming language that then could be compiled into a portable
binary format. In theory, that is exactly what was achieved. Java code is
portable to any system that has a Java interpreter. However, Java is not
at all machine independent. Rather, Java is machine specific to the Java
virtual machine

Language Fundamental

First Program

1. Start NotePad. In a new document, type in the following
code:

/**

 * The HelloWorldApp class implements an

application that

 * displays "Hello World!" to the standard output.

Yogidham, kalawad road, RAJKOT 14

Atmiya Infotech

 */

public class HelloWorldApp {

 public static void main(String[] args) {

 // Display "Hello World!"

 System.out.println("Hello World!");

 }

}

2. Save this code to a file. From the menu bar, select File > Save As. In
the Save As dialog box:
Using the Save in drop-down menu, specify the folder (directory) where
you'll save your file. In this example, the directory is java on the C
drive.
In the File name text box, type "HelloWorldApp.java", including the
double quotation marks.
From the Save as type drop-down menu, choose Text Document.
When you're finished, the dialog box should look like this:

Now click Save, and exit NotePad.

Yogidham, kalawad road, RAJKOT 15

Atmiya Infotech

Compiling a program

Compile the Source File.

From the Start menu, select the MS-DOS Prompt application
(Windows 95/98) or Command Prompt application
(Windows NT). When the application launches, it should
look like this:

The prompt shows your current directory. When you

bring up the prompt for Windows 95/98, your current

directory is usually WINDOWS on your C drive (as

shown above) or WINNT for Windows NT. To compile

your source code file, change your current directory to

the directory where your file is located. For example, if

your source directory is java on the C drive, you would

type the following command at the prompt and press

Enter:

 cd c:\java

Now the prompt should change to C:\java>.

If you enter dir at the prompt, you should see your file.

Yogidham, kalawad road, RAJKOT 16

Atmiya Infotech

Now you can compile. At the prompt, type the following

command and press Enter:

 javac

HelloWorldApp.java

The compiler has generated a Java bytecode file,

HelloWorldApp.class. At the prompt, type dir to see the

new file that was generated:

Yogidham, kalawad road, RAJKOT 17

Atmiya Infotech

Now that you have a .class file, you can run your program.

Running a program

In the same directory, enter at the prompt:

 java HelloWorldApp
Now you should see:

Command line argument
All Java Application contain a static method named main().This method
takes one argument that is an array of String objects..These objects
represent any arguments that may have been entered by the user on the
command line.

Yogidham, kalawad road, RAJKOT 18

Atmiya Infotech

Accepting user inputs
Class CommandLineArgs
{
 public static void main(String args[])
 {
 System.out.println(“args.length =” + args.length);
 System.out.println(“args[0] =” + args[0]);
 System.out.println(“args[1] =” + args[1]);
 System.out.println(“args[2] =” + args[2]);

}
}

You may invoke as follows:
Java CommandLineArgs 1 2 abc

Output will be,

Args.length=3
Args[0]=1
Args[1]=2
Args[2]=abc

Datatypes
You may remember two data types already, these being floating point
(represented by the float keyword) and integer (represented by the int
keyword). Java has eight different data types, all of which represent
different kinds of values in a program. These data types are byte, short,

int, long, float, double, char, and boolean. In this section, you'll learn
what kinds of values these various data types represent

Integer Types
The most common values used in computer programs are integers,
which represent whole number values such as 12, 1988, and -34. Integer

Yogidham, kalawad road, RAJKOT 19

Atmiya Infotech

values can be both positive or negative, or even the value 0. The size of
the value that's allowed depends on the integer data type you choose.
Java features four integer data types, which are byte, short, int, and

long.

Byte

The first integer type, byte, takes up the least amount of space in a
computer's memory. When you declare a constant or variable as byte,
you are limited to values in the range -128 to 127. Why would you want
to limit the size of a value in this way? Because the smaller the data
type, the faster the computer can manipulate it. For example, your
computer can move a byte value, which consumes only eight bits of
memory, much faster than an int value, which, in Java, is four times as
large.

In Java, you declare a byte value like this:

byte identifier;

In the preceding line, byte is the data type for the value, and identifier is
the variable's name. You can also simultaneously declare and assign a
value to a variable like this:

byte count = 100;

After Java executes the preceding line, your program will have a
variable named count that currently holds the value of 100. Of course,
you can change the contents of count at any time in your program.

Yogidham, kalawad road, RAJKOT 20

Atmiya Infotech

Short

The next biggest type of Java integer is short. A variable declared as
short can hold a value from -32,768 to 32,767. You declare a short value
like this:

short identifier;

or

short identifier = value;

In the preceding line, value can be any value from -32,768 to 32,767, as
described previously. In Java, short values are twice as big in memory-
16 bits (or two bytes)-as byte values.

Int

Next in the integer data types is int, which can hold a value from -
2,147,483,648 to 2,147,483,647. Now you're getting into some big
numbers! The int data type can hold such large numbers because it takes
up 32 bits (four bytes) of computer memory. You declare int values like
this:

int identifier;

or

int identifier = value;

Long

The final integer data type in the Java language is long, which takes up a
whopping 64 bits (eight bytes) of computer memory and can hold truly
immense numbers. Unless you're calculating the number of molecules in
the universe, you don't even have to know how big a long number can
be. I'd figure it out for you, but I've never seen a calculator that can
handle numbers that big. You declare a long value like this:

Yogidham, kalawad road, RAJKOT 21

Atmiya Infotech

long identifier;

or

long identifier = value;

Floating-Point Types

Whereas integer values can hold only whole numbers, the floating-point
data types can hold values with both whole number and fractional parts.
Examples of floating-point values include 32.9, 123.284, and -43.436.
As you can see, just like integers, floating-point values can be either
positive or negative.

Java includes two floating-point types, which are float and double.

Float

In Java, a value declared as float can hold a number in the range from
around -3.402823 x 10 38 to around 3.402823 x 10 38. These types of
values are also known as single-precision floating-point numbers and
take up 32 bits (four bytes) of memory. You declare a single-precision
floating-point number like this:

float identifier;

or

float identifier = value;

Yogidham, kalawad road, RAJKOT 22

Atmiya Infotech

double

The second type of floating-point data, double, represents a double-
precision value, which is a much more accurate representation of
floating-point numbers because it allows for more decimal places. A
double value can be in the range from -1.79769313486232 x 10 308 to
1.79769313486232 x 10 308 and is declared like this:

double identifier;

or

double identifier = value;

Characters

Often in your programs, you'll need a way to represent character values
rather than just numbers. A character is a symbol that's used in text. The
most obvious examples of characters are the letters of the alphabet, in
both upper- and lowercase varieties. There are, however, many other
characters, including not only things such as spaces, exclamation points,
and commas, but also tabs, carriage returns, and line feeds. The symbols
0 through 9 are also characters when they're not being used in
mathematical calculations.

In order to provide storage for character values, Java features the char
data type, which is 16 bits. However, the size of the char data type has
little to do with the values it can hold. Basically, you can think of a char
as being able to hold a single character. (The 16 bit length
accommodates Unicode characters, which you don't need to worry about
in this book.) You declare a char value like this:

Yogidham, kalawad road, RAJKOT 23

Atmiya Infotech

char c;

or

char c = 'A';

Boolean

Many times in a program, you need a way to determine if a specific
condition has been met. For example, you might need to know whether a
part of your program executed properly. In such cases, you can use
Boolean values, which are represented in Java by the boolean data type.
Boolean values are unique in that they can be only one of two possible
values: true or false. You declare a boolean value like this:

boolean identifier;

or

boolean identifier = value;

In the second example, value must be true or false. In an actual program,
you might write something like this:

boolean file_okay = true;

Boolean values are often used in if statements, which enable you to do
different things depending on the value of a variable.

Literals
Special Character Literals.

Character Symbol
Backslash \\
Backspace \b

Yogidham, kalawad road, RAJKOT 24

Atmiya Infotech

Carriage return \r
Double quote \"
Form feed \f
Line feed \n
Single quote \'
Tab \t

Variables
Variables are values that can change as much as needed during the
execution of a program. Because of a variable's changing nature, there's
no such thing as a hard-coded variable. That is, hard-coded values in a
program are always constants (or, more accurately, literals).

Definition: A variable is an item of data named
by an identifier.

Declaration

You must explicitly provide a name and a type for each variable
you want to use in your program. The variable's name must be a
legal identifier --an unlimited series of Unicode characters that
begins with a letter. You use the variable name to refer to the data
that the variable contains. The variable's type determines what
values it can hold and what operations can be performed on it. To
give a variable a type and a name, you write a variable declaration,
which generally looks like this:

type name;

Yogidham, kalawad road, RAJKOT 25

Atmiya Infotech

Dynamic Initialization

The MaxVariablesDemo program, shown below,

declares eight variables of different types within its main

method. The variable declarations are red:

public class MaxVariablesDemo {

 public static void main(String args[]) {

 // integers

 byte largestByte = Byte.MAX_VALUE;

 short largestShort = Short.MAX_VALUE;

 int largestInteger =

Integer.MAX_VALUE;

 long largestLong = Long.MAX_VALUE;

 // real numbers

 float largestFloat = Float.MAX_VALUE;

 double largestDouble =

Double.MAX_VALUE;

 // other primitive types

 char aChar = 'S';

 boolean aBoolean = true;

Yogidham, kalawad road, RAJKOT 26

Atmiya Infotech

 // display them all

 System.out.println("The largest byte

value is " + largestByte);

 System.out.println("The largest short

value is " + largestShort);

 System.out.println("The largest integer

value is " + largestInteger);

 System.out.println("The largest long

value is " + largestLong);

 System.out.println("The largest float

value is " + largestFloat);

 System.out.println("The largest double

value is " + largestDouble);

 if (Character.isUpperCase(aChar)) {

 System.out.println("The character " +

aChar + " is upper case.");

 } else {

 System.out.println("The character " +

aChar + " is lower case.");

 }

Yogidham, kalawad road, RAJKOT 27

Atmiya Infotech

 System.out.println("The value of

aBoolean is " + aBoolean);

 }

}

The output from this program is:

The largest byte value is 127

The largest short value is 32767

The largest integer value is 2147483647

The largest long value is

9223372036854775807

The largest float value is 3.40282e+38

The largest double value is 1.79769e+308

The character S is upper case.

The value of aBoolean is true

Scope

A variable's scope is the region of a program within which the
variable can be referred to by its simple name. Secondarily, scope
also determines when the system creates and destroys memory for
the variable. Scope is distinct from visibility, which applies only to
member variables and determines whether the variable can be used
from outside of the class within which it is declared. Visibility is
set with an access modifier.

Yogidham, kalawad road, RAJKOT 28

Atmiya Infotech

The location of the variable declaration within your

program establishes its scope and places it into one of

these four categories:

• member variable
• local variable

• method parameter
• exception-handler parameter

A member variable is a member of a class or an object. It is declared
within a class but outside of any method or constructor. A member
variable's scope is the entire declaration of the class.

You declare local variables within a block of code. In general, the scope
of a local variable extends from its declaration to the end of the code
block in which it was declared. In MaxVariablesDemo, all of the

variables declared within the main method are local variables.

Yogidham, kalawad road, RAJKOT 29

Atmiya Infotech

Parameters are formal arguments to methods or constructors and are
used to pass values into methods and constructors. The scope of a
parameter is the entire method or constructor for which it is a parameter.

Exception-handler parameters are similar to parameters but are
arguments to an exception handler rather than to a method or a
constructor. The scope of an exception-handler parameter is the code
block between { and } that follow a catch statement. Consider the
following code sample:

if (...) {

 int i = 17;

 ...

}

System.out.println("The value of i = " + i); // error

Automatic Type Promotion in Expression
class TypePromotion {
 public static void main(String args[]) {
 int i;
 float f;
 i = 10;
 f = 23.25f;
 System.out.println(i * f);
 }
}

Yogidham, kalawad road, RAJKOT 30

Atmiya Infotech

Operators
An operator performs a function on one, two, or three operands. An
operator that requires one operand is called a unary operator. For
example, ++ is a unary operator that increments the value of its operand
by 1. An operator that requires two operands is a Bianary Operator. For
example, = is a binary operator that assigns the value from its right-hand
operand to its left-hand operand. And finally, a ternary operator is one
that requires three operands. The Java programming language has one
ternary operator, ?:, which is a short-hand if-else statement.

Arithmetic

The Java programming language supports various arithmetic
operators for all floating-point and integer numbers. These
operators are + (addition), - (subtraction), * (multiplication), /

(division), and % (modulo).

The following table summarizes the binary arithmetic operations in the
Java programming language.

Operator Use Description

+ op1 + op2 Adds op1 and op2

- op1 - op2 Subtracts op2 from op1

* op1 * op2 Multiplies op1 by op2

/ op1 / op2 Divides op1 by op2

% op1 %
op2

Computes the remainder of dividing op1 by
op2

Yogidham, kalawad road, RAJKOT 31

Atmiya Infotech

When an integer and a floating-point number are used as
operands to a single arithmetic operation, the result is
floating point. The integer is implicitly converted to a
floating-point number before the operation takes place.

In addition to the binary forms of +
and -, each of these operators has
unary versions that perform the
following operations: Operator

Use Description

+ +op
Promotes op to int if
it's a byte, short, or
char

- -op Arithmetically
negates op

public class Arithmetic {

 public static void main(String args[]) {

 System.out.print(5/2);

 System.out.print(" " + 5%2);

 System.out.print(" " + 4/2);

 System.out.println(" " + 4%2);

 }

}

Yogidham, kalawad road, RAJKOT 32

Atmiya Infotech

out put is ::

2 1 2 0

Relational and Logical

A relational operator compares two values and determines the
relationship between them. For example, != returns true if the two
operands are unequal. This table summarizes the relational operators:

Operator Use Returns true if

> op1 > op2 op1 is greater than op2

>= op1 >= op2 op1 is greater than or equal to op2

< op1 < op2 op1 is less than op2

<= op1 <= op2 op1 is less than or equal to op2

== op1 == op2 op1 and op2 are equal

!= op1 != op2 op1 and op2 are not equal

Assignment

You use the basic assignment operator, =, to assign one value to
another.

byte largestByte = Byte.MAX_VALUE;

short largestShort = Short.MAX_VALUE;

int largestInteger = Integer.MAX_VALUE;

long largestLong = Long.MAX_VALUE;

Yogidham, kalawad road, RAJKOT 33

Atmiya Infotech

The Java programming language also provides several
shortcut assignment operators that allow you to perform an
arithmetic, shift, or bitwise operation and an assignment
operation all with one operator. Suppose you wanted to add a
number to a variable and assign the result back into the
variable, like this:

i = i + 2;

You can shorten this statement using the shortcut operator
+=, like this:

i += 2;

The two previous lines of code are equivalent.

The following table lists the shortcut assignment operators and their
lengthy equivalents

Operator Use Equivalent to

+= op1 += op2 op1 = op1 + op2

-= op1 -= op2 op1 = op1 - op2

*= op1 *= op2 op1 = op1 * op2

/= op1 /= op2 op1 = op1 / op2

%= op1 %= op2 op1 = op1 % op2

&= op1 &= op2 op1 = op1 & op2

|= op1 |= op2 op1 = op1 | op2

^= op1 ^= op2 op1 = op1 ^ op2

Yogidham, kalawad road, RAJKOT 34

Atmiya Infotech

<<= op1 <<= op2 op1 = op1 << op2

>>= op1 >>= op2 op1 = op1 >> op2

>>>= op1 >>>= op2 op1 = op1 >>> op2

Conditional / Ternary

Relational operators often are used with conditional operators to
construct more complex decision-making expressions. The Java
programming language supports six conditional operators-five binary
and one unary--as shown in the following table.

Operator Use Returns true if

&&
op1
&&
op2

op1 and op2 are both true, conditionally
evaluates op2

|| op1 ||
op2

either op1 or op2 is true, conditionally
evaluates op2

! ! op op is false

& op1 &
op2

op1 and op2 are both true, always evaluates
op1 and op2

| op1 |
op2

either op1 or op2 is true, always evaluates op1
and op2

^ op1 ^
op2

if op1 and op2 are different--that is if one or
the other of the operands is true but not both

One such operator is &&, which performs the conditional AND
operation. You can use two different relational operators along with &&

Yogidham, kalawad road, RAJKOT 35

Atmiya Infotech

to determine whether both relationships are true. The following line of
code uses this technique to determine whether an array index is between
two boundaries. It determines whether the index is both greater than or
equal to 0 and less than NUM_ENTRIES, which is a previously defined
constant value.

0 <= index && index < NUM_ENTRIES

The && operator will return true only if both operands are true.

When both operands are boolean, the operator & performs the same
operation as &&. However, & always evaluates both of its operands and
returns true if both are true. Likewise, when the operands are boolean, |
performs the same operation as ||. The | operator always evaluates both
of its operands and returns true if at least one of its operands is true.
When their operands are numbers, & and | perform bitwise
manipulations.

The ?: operator is a conditional operator that is short-hand for an if-else
statement:

op1 ? op2 : op3

The ?: operator returns op2 if op1 is true or returns op3 if op1 is false.

Increment – Decrement

The shortcut increment/decrement operators are summarized in the
following table.

Operator Use Description

++ op++ Increments op by 1; evaluates to the value of op

Yogidham, kalawad road, RAJKOT 36

Atmiya Infotech

before it was incremented

++ ++op Increments op by 1; evaluates to the value of op
after it was incremented

-- op-- Decrements op by 1; evaluates to the value of op
before it was decremented

-- --op Decrements op by 1; evaluates to the value of op
after it was decremented

Bitwise Shift

A shift operator performs bit manipulation on data by shifting the bits of
its first operand right or left. This table summarizes the shift operators
available in the Java programming language.

Operator Use Operation

>> op1 >> op2 shift bits of op1 right by distance op2

<< op1 << op2 shift bits of op1 left by distance op2

>>> op1 >>>
op2

shift bits of op1 right by distance op2
(unsigned)

class Shift {

 public static void main (String args[]) {

 int x = 7;

 System.out.println("x = " + x);

Yogidham, kalawad road, RAJKOT 37

Atmiya Infotech

 System.out.println("x >> 2 = " + (x >> 2));

 System.out.println("x << 1 = " + (x << 1));

 System.out.println("x >>> 1 = " + (x >>> 1));

 }

}

The output of Shift follows:

x = 7

x >> 2 = 1

x << 1 = 14

x >>> 1 = 3

Operator Precedence

Even though Java expressions are typically evaluated from left to right,
there still are many times when the result of an expression would be
indeterminate without other rules. The following expression illustrates
the problem:

x = 2 * 6 + 16 / 4

Strictly using the left-to-right evaluation of the expression, the
multiplication operation 2 * 6 is carried out first, which leaves a result of
12. The addition operation 12 + 16 is then performed, which gives a
result of 28. The division operation 28 / 4 is then performed, which gives

Yogidham, kalawad road, RAJKOT 38

Atmiya Infotech

a result of 7. Finally, the assignment operation x = 7 is handled, in which
the number 7 is assigned to the variable x.

Table ::

. [] ()

++ -- ! ~

* / %

+ -

<< >> >>>

< > <= >=

== !=

&

^

&&

||

?:

=

Evaluation of expressions still moves from left to right, but only when

Yogidham, kalawad road, RAJKOT 39

Atmiya Infotech

dealing with operators that have the same precedence. Otherwise,
operators with a higher precedence are evaluated before operators with a
lower precedence.

Control Statements

Statement Type Keyword

looping while, do-while , for

decision making if-else, switch-case

exception handling try-catch-finally, throw

branching break, continue, label:, return

Programs use control flow statements to conditionally execute
statements, to loop over statements, or to jump to another area in the
program.

If … else
The If statement enables your program to selectively execute other
statements, based on some criteria.
This is the simplest version of the if statement: The block of statements
will be executed if a condition is true. Generally, the simple form of if
can be written like this:
if (expression) {
 statement(s)
}
What if you want to perform a different set of statements if the
expression is false? You use the else.

The else block is executed if the if part is false. Another form of the else
statement, else if, executes a statement based on another expression. An

Yogidham, kalawad road, RAJKOT 40

Atmiya Infotech

if statement can have any number of companion else if statements but
only one else. Following is a program, IfElseDemo , that assigns a
grade based on the value of a test score: an A for a score of 90% or
above, a B for a score of 80% or above, and so on:

public class IfElseDemo {
 public static void main(String[] args) {

 int testscore = 76;
 char grade;

 if (testscore >= 90) {
 grade = 'A';
 } else if (testscore >= 80) {
 grade = 'B';
 } else if (testscore >= 70) {
 grade = 'C';
 } else if (testscore >= 60) {
 grade = 'D';
 } else {
 grade = 'F';
 }
 System.out.println("Grade = " + grade);
 }
}
Out Put ::
Grade = c

Switch … case
Use the switch statement to conditionally perform statements based on
an integer expression. Following is a sample program, SwitchDemo,

that declares an integer named month whose value supposedly

Yogidham, kalawad road, RAJKOT 41

http://www.buginword.com

Atmiya Infotech

represents the month in a date. The program displays the name of the
month, based on the value of month, using the switch statement:

public class SwitchDemo {
 public static void main(String[] args) {

 int month = 8;
 switch (month) {
 case 1: System.out.println("January"); break;
 case 2: System.out.println("February"); break;
 case 3: System.out.println("March"); break;
 case 4: System.out.println("April"); break;
 case 5: System.out.println("May"); break;
 case 6: System.out.println("June"); break;
 case 7: System.out.println("July"); break;
 case 8: System.out.println("August"); break;
 case 9: System.out.println("September"); break;
 case 10: System.out.println("October"); break;
 case 11: System.out.println("November"); break;
 case 12: System.out.println("December"); break;
 default: System.out.println("Hey, that's not a valid month!");
break;
}

 }
 }
}
Out Put ::August

Loops
Loops enable you to execute code repeatedly. There are three types of
loops in Java: for loops, while loops, and do-while loops.

Yogidham, kalawad road, RAJKOT 42

Atmiya Infotech

While

You use a while statement to continually execute a block of
statements while a condition remains true. The general syntax of
the while statement is:

while (expression) {

 statement
}

First, the while statement evaluates expression, which must return a

boolean value. If the expression returns true, then the while statement

executes the statement(s) associated with it. The while statement
continues testing the expression and executing its block until the
expression returns false.

The example program shown below, called WhileDemo, uses a while
statement to step through the characters of a string, appending each
character from the string to the end of a string buffer until it encounters
the letter g.
public class WhileDemo {
 public static void main(String[] args) {

 String copyFromMe = "Copy this string until you " +
 "encounter the letter 'g'.";
 StringBuffer copyToMe = new StringBuffer();

 int i = 0;
 char c = copyFromMe.charAt(i);

 while (c != 'g') {
 copyToMe.append(c);

Yogidham, kalawad road, RAJKOT 43

Atmiya Infotech

 c = copyFromMe.charAt(++i);
 }
 System.out.println(copyToMe);
 }
}
The value printed by the last line is: Copy this string.

do … while
The Java programming language provides another statement that is
similar to the while statement--the do-while statement. The general
syntax of the do-while is:
do {
 statement(s)
} while (expression);
Instead of evaluating the expression at the top of the loop, do-while
evaluates the expression at the bottom. Thus the statements associated
with a do-while are executed at least once.
Here's the previous program rewritten to use do-while and renamed to
public class DoWhileDemo {
 public static void main(String[] args) {

 String copyFromMe = "Copy this string until you " +
 "encounter the letter 'g'.";
 StringBuffer copyToMe = new StringBuffer();

 int i = 0;
 char c = copyFromMe.charAt(i);

 do {
 copyToMe.append(c);
 c = copyFromMe.charAt(++i);
 } while (c != 'g');
 System.out.println(copyToMe);
 }
}

Yogidham, kalawad road, RAJKOT 44

Atmiya Infotech

The value printed by the last line is: Copy this string.

For
The for statement provides a compact way to iterate over a range of
values. The general form of the for statement can be expressed like this:
for (initialization; termination; increment) {
 statement
}
The initialization is an expression that initializes the loop-it's executed
once at the beginning of the loop. The termination expression
determines when to terminate the loop. This expression is evaluated at
the top of each iteration of the loop. When the expression evaluates to
false, the loop terminates. Finally, increment is an expression that gets
invoked after each iteration through the loop. All these components are
optional. In fact, to write an infinite loop, you omit all three expressions:
for (; ;) { // infinite loop
 ...
}
Often for loops are used to iterate over the elements in an array, or the
characters in a string. The following sample, ForDemo , uses a for
statement to iterate over the elements of an array and print them:
public class ForDemo {
 public static void main(String[] args) {
 int[] arrayOfInts = { 32, 87, 3, 589, 12, 1076,
 2000, 8, 622, 127 };

 for (int i = 0; i < arrayOfInts.length; i++) {
 System.out.print(arrayOfInts[i] + " ");
 }
 System.out.println();
 }
}
The output of the program is: 32 87 3 589 12 1076 2000 8 622 127.

Yogidham, kalawad road, RAJKOT 45

http://www.buginword.com

Atmiya Infotech

Nested Loops and Labeled Loops

A label is an identifier placed before a statement. The label is followed
by a colon (:):
statementName: someJavaStatement;

. The following program, BreakWithLabelDemo , searches for a value
in a two-dimensional array. Two nested for loops traverse the array.
When the value is found, a labeled break terminates the statement
labeled search, which is the outer for loop:

public class BreakWithLabelDemo {
 public static void main(String[] args) {

 int[][] arrayOfInts = { { 32, 87, 3, 589 },
 { 12, 1076, 2000, 8 },
 { 622, 127, 77, 955 }
 };
 int searchfor = 12;

 int i = 0;
 int j = 0;
 boolean foundIt = false;

 search:
 for (; i < arrayOfInts.length; i++) {
 for (j = 0; j < arrayOfInts[i].length; j++) {
 if (arrayOfInts[i][j] == searchfor) {
 foundIt = true;
 break search;
 }
 }
 }

Yogidham, kalawad road, RAJKOT 46

http://www.buginword.com

Atmiya Infotech

 if (foundIt) {
 System.out.println("Found " + searchfor + " at " + i + ", " + j);
 } else {
 System.out.println(searchfor + "not in the array");
 }

 }
}
The output of this program is:
Found 12 at 1, 0
The labeled form of the continue statement skips the current iteration of
an outer loop marked with the given label. The following example
program, ContinueWithLabelDemo , uses nested loops to search for a
substring within another string. Two nested loops are required: one to
iterate over the substring and one to iterate over the string being
searched. This program uses the labeled form of continue to skip an
iteration in the outer loop:

public class ContinueWithLabelDemo {
 public static void main(String[] args) {

 String searchMe = "Look for a substring in me";
 String substring = "sub";
 boolean foundIt = false;

 int max = searchMe.length() - substring.length();

 test:
 for (int i = 0; i <= max; i++) {
 int n = substring.length();
 int j = i;
 int k = 0;
 while (n-- != 0) {
 if (searchMe.charAt(j++) != substring.charAt(k++)) {

Yogidham, kalawad road, RAJKOT 47

http://www.buginword.com

Atmiya Infotech

 continue test;
 }
 }
 foundIt = true;
 break test;
 }
 System.out.println(foundIt ? "Found it" : "Didn't find it");
 }
}
Here is the output from this program:
Found it

Jump Statements

Break
The break statement has two forms: unlabeled and labeled. You saw the
unlabeled form of the break statement used with switch earlier. As

noted there, an unlabeled break terminates the enclosing switch
statement, and flow of control transfers to the statement immediately
following the switch. You can also use the unlabeled form of the break

statement to terminate a for, while, or do-while loop. The following

sample program, BreakDemo, contains a for loop that searches for a
particular value within an array:

public class BreakDemo {

 public static void main(String[] args) {

 int[] arrayOfInts = { 32, 87, 3, 589, 12,

1076,

Yogidham, kalawad road, RAJKOT 48

Atmiya Infotech

 2000, 8, 622, 127 };

 int searchfor = 12;

 int i = 0;

 boolean foundIt = false;

 for (; i < arrayOfInts.length; i++) {

 if (arrayOfInts[i] == searchfor) {

 foundIt = true;

 break;

 }

 }

 if (foundIt) {

 System.out.println("Found " +

searchfor + " at index " + i);

 } else {

 System.out.println(searchfor + "not in

the array");

 }

 }

}

Yogidham, kalawad road, RAJKOT 49

Atmiya Infotech

The break statement terminates the for loop when the value
is found. The flow of control transfers to the statement
following the enclosing for, which is the print statement at
the end of the program.

The output of this program is:

Found 12 at index 4

Continue
You use the continue statement to skip the current iteration of a for,
while , or do-while loop. The unlabeled form skips to the end of the
innermost loop's body and evaluates the boolean expression that controls
the loop, basically skipping the remainder of this iteration of the loop.
The following program, ContinueDemo, steps through a string buffer
checking each letter. If the current character is not a p, the continue
statement skips the rest of the loop and proceeds to the next character. If
it is a p, the program increments a counter, and converts the p to an
uppercase letter.

public class ContinueDemo {
 public static void main(String[] args) {

 StringBuffer searchMe = new StringBuffer(
 "peter piper picked a peck of pickled peppers");
 int max = searchMe.length();
 int numPs = 0;

 for (int i = 0; i < max; i++) {
 //interested only in p's
 if (searchMe.charAt(i) != 'p')
 continue;

Yogidham, kalawad road, RAJKOT 50

Atmiya Infotech

 //process p's
 numPs++;
 searchMe.setCharAt(i, 'P');
 }
 System.out.println("Found " + numPs + " p's in the string.");
 System.out.println(searchMe);
 }
}
Here is the output of this program:
Found 9 p's in the string.
Peter PiPer Picked a Peck of Pickled PePPers

Return
The last of Java's branching statements is the return statement. You use
return to exit from the current method. The flow of control returns to the

statement that follows the original method call. The return statement has
two forms: one that returns a value and one that doesn't. To return a
value, simply put the value (or an expression that calculates the value)
after the return keyword:

return ++count;

The data type of the value returned by return must match the type of the
method's declared return value. When a method is declared void, use the
form of return that doesn't return a value:
return;

Arrays

An array is a structure that holds multiple values of the same type.
The length of an array is established when the array is created (at
runtime). After creation, an array is a fixed-length structure.

Yogidham, kalawad road, RAJKOT 51

http://www.buginword.com

Atmiya Infotech

An array element is one of the values within an array and is
accessed by its position within the array.

If you want to store data of different types in a single

structure, or if you need a structure

Arrays are objects that contain a number of variables of the same

type. These component variables are referenced using the integer

indices 0,…,n-1, where n is the length of the array. The type of

the array is identified by appending [] to the type of its

components. For example, int[] identifies an array of type int,

Object[] identifies an array of type Object, and char[][] identifies an

array of an array of type char.

Array Allocation
When a variable of an array type is declared, the size of the array is not
identified, and the array object is not allocated. To allocate storage for
an array, you can use the new operator to create an array object of a
specific size. For example, the following statement:
char ch[] = new char[24];

Yogidham, kalawad road, RAJKOT 52

Atmiya Infotech

creates a char array of length 24, the individual component variables of
which can be referenced by ch[0], ch[2], …, ch[23]. The following
statement creates an array of type Dice[] of length 6:
Dice[] d = new Dice[6];
Arrays can also be allocated by specifying their initial values. For
example, the following allocates a String array of length 7 that contains
abbreviations for the days of the week:
String days[] = {"sun", "mon", "tue", "wed", "thu", "fri", "sat"};
The length of an array can always be found by appending .length to the
name of the array. For example, days.length returns the integer 7 as the
length of days[].

Alternate Array Declaration Syntax

Arrays are declared by declaring a variable to be of an array type. For
example, the following declares nums to be an array of type int:
int[] nums;
The declaration can also be written as follows:
int nums[];
You can place the brackets after either the type or the variable name.

One-Dimensional Array

Here's a simple program, called ArrayDemo, that creates the array, puts
some values in it, and displays the values.

public class ArrayDemo {
 public static void main(String[] args) {
 int[] anArray; // declare an array of integers

 anArray = new int[10]; // create an array of integers

 // assign a value to each array element and print
 for (int i = 0; i < anArray.length; i++) {
 anArray[i] = i;

Yogidham, kalawad road, RAJKOT 53

Atmiya Infotech

 System.out.print(anArray[i] + " ");
 }
 System.out.println();
 }
}

Multi-Dimensional Array
As with Multi-dimensional Array ,you must explicitly create the sub-
arrays within an array. So if you don't use an initializer, you need to
write code like the following, which you can find in:
ArrayOfArraysDemo2

public class ArrayOfArraysDemo2 {
 public static void main(String[] args) {
 int[][] aMatrix = new int[4][];

 //populate matrix
 for (int i = 0; i < aMatrix.length; i++) {
 aMatrix[i] = new int[5]; //create sub-array
 for (int j = 0; j < aMatrix[i].length; j++) {
 aMatrix[i][j] = i + j;
 }
 }

 //print matrix
 for (int i = 0; i < aMatrix.length; i++) {
 for (int j = 0; j < aMatrix[i].length; j++) {
 System.out.print(aMatrix[i][j] + " ");
 }
 System.out.println();
 }
 }
}

Yogidham, kalawad road, RAJKOT 54

Atmiya Infotech

You must specify the length of the primary array when you create the
array. You can leave the length of the sub-arrays unspecified until you
create them.

Implementing Classes

Basics
A class is a template or prototype that defines a type of object. A class is
to an object what a blueprint is to a house. Many houses can be built
from a single blueprint; the blueprint outlines the makeup of the houses.
Classes work exactly the same way, except that they outline the makeup
of objects.
Java, C++, Smalltalk, and some other object-oriented languages follow a
class-based approach. This approach allows you to declare classes that
serve as a template from which objects are created.

As you would expect, a class defines the type of data that is contained in
an object and the methods that are used to access this data. A class also
defines one or more methods to be used to create objects that are
instances of the class. An instance of a class is a concrete manifestation
of the class in your computer's memory.

For example, consider a job application form as an object. It contains
data-the different form fields that must be filled out. There are also
methods for accessing the data-for example, fill in form and read form.
Now suppose that you develop an application form for a company that
will use it for new job applicants. When a job is advertised, 100 potential
applicants show up. In order for these applicants to use your form, they
must all be given a unique instance of the form. These form instances
are created by using the form you developed as a master copy and then
duplicating the master copy as many times as needed to create each
instance. The job applicants then fill in their instances of the form, using
the fill in form method.

Yogidham, kalawad road, RAJKOT 55

Atmiya Infotech

In the preceding example, the master form is analogous to a class. The
master form defines the data to be contained in each of its instances and
implicitly provides methods by which the data can be accessed. In the
same way, a class defines the data that can be contained in an object as
well as the methods that can be used to access this data.

General Form of a Class

Now that we've covered how to create and use objects, and how objects
are cleaned up, it's time to show you how to write the classes from
which objects are created. This section shows you the main components
of a class through a small example that implements a last-in-first-out
(LIFO) stack. The following diagram lists the class and identifies the
structure of the code.

Yogidham, kalawad road, RAJKOT 56

Atmiya Infotech

Creating Classes & their Objects

The left side of the following diagram shows the possible components of
a class declaration in the order they should or must appear in your class
declaration. The right side describes their purposes. The required
components are the class keyword and the class name and are shown in
bold. All the other components are optional, and each appears on a line
by itself (thus "extends Super" is a single component). Italics indicates
an identifier such as the name of a class or interface. If you do not
explicitly declare the optional items, the Java compiler assumes certain
defaults: a nonpublic, nonabstract, nonfinal subclass of Object that
implements no interfaces.

The following list provides a few more details about each class
declaration component. It also provides references to sections later in
this trail that talk about what each component means, how to use each,
and how it affects your class, other classes, and your Java program.

public
By default, a class can be used only by other classes in the
same package. The public modifier declares that the class can
be used by any class regardless of its package

Yogidham, kalawad road, RAJKOT 57

Atmiya Infotech

abstract
Declares that the class cannot be instantiated.

final
Declares that the class cannot be subclassed.

class NameOfClass

The class keyword indicates to the compiler that this is a
class declaration and that the name of the class is
NameOfClass.

extends Super

The extends clause identifies Super as the superclass of the
class, thereby inserting the class within the class hierarchy.

implements Interfaces
To declare that your class implements one or more interfaces, use
the keyword implements followed by a comma-separated list of the
names of the interfaces implemented by the class.

class body

contains all of the code that provides for the life cycle of the
objects created from it: constructors for initializing new
objects, declarations for the variables that provide the state of
the class and its objects, methods to implement the behavior
of the class and its objects, and in rare cases, a finalize
method to provide for cleaning up an object after it has done
its job.

Yogidham, kalawad road, RAJKOT 58

Atmiya Infotech

Variables and methods collectively are called members.

Note: Constructors are not methods. Nor are they
members.

Object

Objects are software bundles of data and the procedures that act on that
data. The procedures are also known as methods. The merger of data and
methods provides a means of more accurately representing real-world
objects in software.

objects are at the heart of object-oriented technology. To understand
how software objects are beneficial, think about the common
characteristics of all real-world objects. Lions, cars, and calculators all
share two common characteristics: state and behavior. For example, the
state of a lion includes color, weight, and whether the lion is tired or
hungry. Lions also have certain behaviors, such as roaring, sleeping, and
hunting. The state of a car includes the current speed, the type of
transmission, whether it is two-wheel or four-wheel drive, whether the
lights are on, and the current gear, among other things. The behaviors for
a car include turning, braking, and accelerating.

As with real-world objects, software objects also have these two
common characteristics (state and behavior). To relate this back to
programming terms, the state of an object is determined by its data; the
behavior of an object is defined by its methods

Figure shows a visualization of a software object, including the primary
components and how they relate. The software object in Figure clearly
shows the two primary components of an object: data and methods. The
figure also shows some type of communication, or access, between the
data and the methods. Additionally, it shows how messages are sent
through the methods, which result in responses from the object.

Yogidham, kalawad road, RAJKOT 59

Atmiya Infotech

Assigning Object Reference Variable
To create an instance of a class, you declare an object variable and use
the new operator. When dealing with objects, a declaration merely states
what type of object a variable is to represent. The object isn't actually
created until the new operator is used. Following are two examples that
use the new operator to create instances of the Alien class:
Alien anAlien = new Alien();

Yogidham, kalawad road, RAJKOT 60

Atmiya Infotech

Alien anotherAlien;
anotherAlien = new Alien(Color.red, 56, 24);
In the first example, the variable anAlien is declared and the object is
created by using the new operator with an assignment directly in the
declaration. In the second example, the variable anotherAlien is declared
first; the object is created and assigned in a separate statement.

Methods
Methods in Java determine the messages an object can receive.

The fundamental parts of a method are the name, the arguments, the
return type, and the body. Here is the basic form:
returnType methodName(/* Argument list */) {
 /* Method body */
}
The return type is the type of the value that pops out of the method after
you call it. The argument list gives the types and names for the
information you want to pass into the method. The method name and
argument list together uniquely identify the method.
Methods in Java can be created only as part of a class. A method can be
called only for an object,and that object must be able to perform that
method call. If you try to call the wrong method for an object, you’ll get
an error message at compile-time. You call a method for an object by
naming the object followed by a period (dot), followed by the name of
the method and its argument list, like this:
objectName.methodName(arg1, arg2, arg3). For example, suppose you
have a method f() that takes no arguments and returns a value of type
int. Then, if you have an object called a for which f() can be called, you
can say this:
int x = a.f();
The type of the return value must be compatible with the type of x.
This act of calling a method is commonly referred to as sending a
message to an object. In the above example, the message is f() and the

Yogidham, kalawad road, RAJKOT 61

Atmiya Infotech

object is a. Object-oriented programming is often summarized as simply
“sending messages to objects.”

Constructors
There is an important method you need to know about: the constructor.
When you create an object, you typically want to initialize its member
variables. The constructor is a special method you can implement in all
your classes; it allows you to initialize variables and perform any other
operations when an object is created from the class. The constructor is
always given the same name as the class.
 There is three types of constructor::
 Copy,parameterized,default

The Alien class.

class Alien extends Enemy {

 protected Color color;

 protected int energy;

 protected int aggression;

 public Alien() {

 color = Color.green;

 energy = 100;

 aggression = 15;

Yogidham, kalawad road, RAJKOT 62

Atmiya Infotech

 }

 public Alien(Color c, int e, int a) {

 color = c;

 energy = e;

 aggression = a;

 }

 public void move() {

 // move the alien

 }

 public void move(int x, int y) {

 // move the alien to the position x,y

 }

 public void morph() {

 if (aggression < 10) {

 // morph into a smaller size

 }

 else if (aggression < 20) {

 // morph into a medium size

 }

Yogidham, kalawad road, RAJKOT 63

Atmiya Infotech

 else {

 // morph into a giant size

 }

 }

}
The Alien class uses method overloading to provide two different
constructors. The first constructor is default Constructor which takes no
parameters and initializes the member variables. The second constructor
is parameterized constructor which takes the color, energy, and
aggression of the alien and initializes the member variables with them.

The this keyword
The this Keyword refers to the object that is currently executing .U will
see that it is sometimes useful for a method to reference instance
variables relative to the this keyword ,as follows :
This.varName

class Point3D {
 double x;
 double y;
 double z;

 Point3D(double x, double y, double z) {
 this.x = x;
 this.y = y;
 this.z = z;
 }
}

class ThisKeywordDemo {

Yogidham, kalawad road, RAJKOT 64

Atmiya Infotech

 public static void main(String args[]) {
 Point3D p = new Point3D(1.1, 3.4, -2.8);
 System.out.println("p.x = " + p.x);
 System.out.println("p.y = " + p.y);
 System.out.println("p.z = " + p.z);
 }
}

Garbage Collection
When an object falls out of scope, it is removed from memory, or
deleted. Similar to the constructor that is called when an object is
created, Java provides the ability to define a destructor that is called
when an object is deleted. Unlike the constructor, which takes on the
name of the class, the destructor is called finalize(). The finalize()
method provides a place to perform chores related to the cleanup of the
object, and is defined as follows:
void finalize() {
 // cleanup
}
It is worth noting that the finalize() method is not guaranteed to be called
by Java as soon as an object falls out of scope. The reason for this is that
Java deletes objects as part of its system garbage collection, which
occurs at inconsistent intervals. Because an object isn't actually deleted
until Java performs a garbage collection, the finalize() method for the
object isn't called until then either. Knowing this, it's safe to say that you
shouldn't rely on the finalize() method for anything that is time critical.
In general, you will rarely need to place code in the finalize() method
simply because the Java runtime system does a pretty good job of
cleaning up after objects on its own.

Overloading
Another powerful object-oriented technique is method overloading.
Method overloading enables you to specify different types of

Yogidham, kalawad road, RAJKOT 65

Atmiya Infotech

information (parameters) to send to a method. To overload a method,
you declare another version with the same name but different
parameters.
For example, the move() method for the Alien class could have two
different versions: one for general movement and one for moving to a
specific location. The general version is the one you've already defined:
it moves the alien based on its current state. The declaration for this
version follows:
void move() {
 // move the alien
}
To enable the alien to move to a specific location, you overload the
move() method with a version that takes x and y parameters, which
specify the location to move to. The overloaded version of move()
follows:
void move(int x, int y) {
 // move the alien to position x,y
}

Notice that the only difference between the two methods is the
parameter lists; the first move() method takes no parameters; the second
move() method takes two integers.
You may be wondering how the compiler knows which method is being
called in a program, when they both have the same name. The compiler
keeps up with the parameters for each method along with the name.
When a call to a method is encountered in a program, the compiler
checks the name and the parameters to determine which overloaded
method is being called. In this case, calls to the move() methods are
easily distinguishable by the absence or presence of the int parameters.

Understanding final & static

The final modifier specifies that a variable has a constant value or that a
method cannot be overridden in a subclass. To think of the final modifier

Yogidham, kalawad road, RAJKOT 66

Atmiya Infotech

literally, it means that a class member is the final version allowed for the
class.
Following are some examples of final member variables:
final public int numDollars = 25;
final boolean amIBroke = false;
final variables in Java are very similar to const variables in C++; they
must always be initialized at declaration and their value can't change any
time afterward.

The static modifier specifies that a variable or method is the same for all
objects of a particular class.

Typically, new variables are allocated for each instance of a class. When
a variable is declared as being static, it is allocated only once regardless
of how many objects are instantiated. The result is that all instantiated
objects share the same instance of the static variable. Similarly, a static
method is one whose implementation is exactly the same for all objects
of a particular class. This means that static methods have access only to
static variables.
Following are some examples of a static member variable and a static
method:
static int refCount;
static int getRefCount() {
 return refCount;
}
A beneficial side effect of static members is that they can be accessed
without having to create an instance of a class. Remember the
System.out.println() method. out is a static member variable of the
System class, which means that you can access it without having to
actually instantiate a System object.

Nested / Inner Classes
Most Java classes are defined at the package level, meaning that each
class is a member of a particular package. If you don't explicitly specify

Yogidham, kalawad road, RAJKOT 67

Atmiya Infotech

a package association for a class, the default package is assumed.
Classes defined at the package level are known as top-level classes.
Before Java 1.1, top-level classes were the only types of classes
supported. However, Java 1.1 has ushered in a more open-minded
approach to class definition. Java 1.1 supports inner classes, which are
classes that can be defined in any scope. This means that a class can be
defined as a member of another class, within a block of statements, or
anonymously within an expression.

Rules governing the scope of an inner class closely match those
governing variables. An inner class's name is not visible outside its
scope, except in a fully qualified name (which helps in structuring
classes within a package). The code for an inner class can use simple
names from enclosing scopes--including class and member variables of
enclosing classes--as well as local variables of enclosing blocks. In
addition, you can define a top-level class as a static member of another
top-level class. Unlike an inner class, a top-level class cannot directly
use the instance variables of any other class. The ability to nest classes
in this way allows any top-level class to provide a package-style
organization for a logically related group of secondary top-level classes.
Following is a simple example of an inner class:
public class Outer {
 int x, y;

 public int calcArea() {
 return x * y;
 }
 class Inner {
 int z;
 public int calcVolume() {
 return calcArea() * z;
 }
 }
}

Yogidham, kalawad road, RAJKOT 68

Atmiya Infotech

In this example, an inner class named Inner is declared within a class
called Outer. As you can see, the inner class declaration looks just like a
normal (outer) class declaration. this example gives you an idea of how
inner classes are structured.

Inheritance

Basics
What happens if you want an object that is very similar to one you
already have, but that has a few extra characteristics? You just inherit a
new class based on the class of the similar object. Inheritance is the
process of creating a new class with the characteristics of an existing
class, along with additional characteristics unique to the new class.
Inheritance provides a powerful and natural mechanism for organizing
and structuring programs.
So far, the discussion of classes has been limited to the data and methods
that make up a class. Based on this understanding, all classes are built
from scratch by defining all the data and all the associated methods.
Inheritance provides a means to create classes based on other classes.
When a class is based on another class, it inherits all the properties of
that class, including the data and methods for the class. The class doing
the inheriting is referred to as the subclass (or the child class), and the
class providing the information to inherit is referred to as the superclass
(or the parent class).
Using the car example, child classes could be inherited from the car
class for gas-powered cars and cars powered by electricity. Both new car
classes share common "car" characteristics, but they also add a few
characteristics of their own. The gas car would add, among other things,

Yogidham, kalawad road, RAJKOT 69

Atmiya Infotech

a fuel tank and a gas cap; the electric car would add a battery and a plug
for recharging. Each subclass inherits state information (in the form of
variable declarations) from the superclass. Figure 5.3 shows the car
parent class with the gas and electric car child classes.
Inheriting the state and behaviors of a superclass alone wouldn't do all
that much for a subclass. The real power of inheritance is the ability to
inherit properties and methods and add new ones; subclasses can add
variables and methods to the ones they inherited from the superclass.
Remember that the electric car added a battery and a recharging plug.
Additionally, subclasses have the ability to override inherited methods
and provide different implementations for them. For example, the gas
car would probably be able to go much faster than the electric car. The
accelerate method for the gas car could reflect this difference.

Inherited car objects.

extends keyword declares that your class is a subclass of another

You can specify only one superclass for your class (Java does not
support multiple class inheritance).. So, every class in Java has one and
only one immediate superclass

Yogidham, kalawad road, RAJKOT 70

Atmiya Infotech

As depicted in the following figure, the top-most class, the class from
which all other classes are derived, is the Object class defined in
java.lang.

The Object class defines and implements behavior that every class in
the Java system needs. It is the most general of all classes. Its immediate
subclasses, and other classes near top of the hierarchy, implement
general behavior; classes near the bottom of the hierarchy provide for
more specialized behavior

The following list itemizes the members that are inherited by a
subclass:

• Subclasses inherit those superclass members declared
as public or protected.

• Subclasses inherit those superclass members declared
with no access specifier as long as the subclass is in the
same package as the superclass.

• Subclasses don't inherit a superclass's member if the
subclass declares a member with the same name. In the
case of member variables, the member variable in the
subclass hides the one in the superclass. In the case of
methods, the method in the subclass overrides the one
in the superclass.

Yogidham, kalawad road, RAJKOT 71

Atmiya Infotech

Creating a subclass can be as simple as including the extends clause in
your class declaration. However, you usually have to make other
provisions in your code when subclassing a class, such as overriding
methods or providing implementations for abstract methods.

class W {
 float f;
}

class X extends W {
 StringBuffer sb;
}

class Y extends X {
 String s;
}

class Z extends Y {
 Integer i;
}

class Wxyz {
 public static void main(String args[]) {
 Z z = new Z();
 z.f = 4.567f;
 z.sb = new StringBuffer("abcde");
 z.s = "Teach Yourself Java";
 z.i = new Integer(41);
 System.out.println("z.f = " + z.f);
 System.out.println("z.sb = " + z.sb);
 System.out.println("z.s = " + z.s);
 System.out.println("z.i = " + z.i);
 }
}

Yogidham, kalawad road, RAJKOT 72

Atmiya Infotech

Modifiers

Access to variables and methods in Java classes is accomplished through
access modifiers. Access modifiers define varying levels of access
between class members and the outside world (other objects). Access
modifiers are declared immediately before the type of a member variable
or the return type of a method. There are four access modifiers: the
default access modifier, public, protected, and private.

Access modifiers affect not only the visibility of class members, but also
of classes themselves.

The Default Access Modifier
The default access modifier specifies that only classes in the same
package can have access to a class's variables and methods. Class
members with default access have a visibility limited to other classes
within the same package. There is no actual keyword for declaring the
default access modifier; it is applied by default in the absence of an
access modifier. For example, the Alien class members all had default
access because no access modifiers were specified. Examples of a
default access member variable and method follow:
long length;
void getLength() {
 return length;
}
Notice that neither the member variable nor the method supply an access
modifier, so they take on the default access modifier implicitly.

The public Access Modifier
The public access modifier specifies that class variables and methods are
accessible to anyone, both inside and outside the class. This means that
public class members have global visibility and can be accessed by any
other objects. Some examples of public member variables follow:

Yogidham, kalawad road, RAJKOT 73

Atmiya Infotech

public int count;
public boolean isActive;

The protected Access Modifier
The protected access modifier specifies that class members are
accessible only to methods in that class and subclasses of that class. This
means that protected class members have visibility limited to subclasses.
Examples of a protected variable and a protected method follow:
protected char middleInitial;
protected char getMiddleInitial() {
 return middleInitial;
}

The private Access Modifier
The private access modifier is the most restrictive; it specifies that class
members are accessible only by the class in which they are defined. This
means that no other class has access to private class members, even
subclasses. Some examples of private member variables follow:
private String firstName;
private double howBigIsIt;

The static Modifier
There are times when you need a common variable or method for all
objects of a particular class. The static modifier specifies that a variable
or method is the same for all objects of a particular class.
Typically, new variables are allocated for each instance of a class. When
a variable is declared as being static, it is allocated only once regardless
of how many objects are instantiated. The result is that all instantiated
objects share the same instance of the static variable. Similarly, a static
method is one whose implementation is exactly the same for all objects
of a particular class. This means that static methods have access only to
static variables.
Following are some examples of a static member variable and a static
method:
static int refCount;

Yogidham, kalawad road, RAJKOT 74

Atmiya Infotech

static int getRefCount() {
 return refCount;
}
A beneficial side effect of static members is that they can be accessed
without having to create an instance of a class. Remember the
System.out.println() method used in the last chapter? Do you recall ever
instantiating a System object? Of course not. out is a static member
variable of the System class, which means that you can access it without
having to actually instantiate a System object.

The final Modifier
Another useful modifier in regard to controlling class member usage is
the final modifier. The final modifier specifies that a variable has a
constant value or that a method cannot be overridden in a subclass. To
think of the final modifier literally, it means that a class member is the
final version allowed for the class.
Following are some examples of final member variables:
final public int numDollars = 25;
final boolean amIBroke = false;
If you are coming from the world of C++, final variables may sound
familiar. In fact, final variables in Java are very similar to const
variables in C++; they must always be initialized at declaration and their
value can't change any time afterward

The synchronized Modifier
The synchronized modifier is used to specify that a method is thread
safe. This means that only one path of execution is allowed into a
synchronized method at a time. In a multithreaded environment like
Java, it is possible to have many different paths of execution running
through the same code. The synchronized modifier changes this rule by
allowing only a single thread access to a method at once, forcing the
other threads to wait their turn.

Yogidham, kalawad road, RAJKOT 75

Atmiya Infotech

The native Modifier
The native modifier is used to identify methods that have native
implementations. The native modifier informs the Java compiler that a
method's implementation is in an external C file. It is for this reason that
native method declarations look different from other Java methods; they
have no body. Following is an example of a native method declaration:
native int calcTotal();
Notice that the method declaration simply ends in a semicolon; there are
no curly braces containing Java code.

The super keyword

If your method hides one of its superclass's member variables, your
method can refer to the hidden variable through the use of the
super keyword. Similarly, if your method overrides one of its
superclass's methods, your method can invoke the overridden
method through the use of the super keyword.

class ASillyClass {
 boolean aVariable;
 void aMethod() {
 aVariable = true;
 }
}
and its subclass which hides aVariable and overrides aMethod:
class ASillierClass extends ASillyClass {
 boolean aVariable;
 void aMethod() {
 aVariable = false;
 super.aMethod();
 System.out.println(aVariable);
 System.out.println(super.aVariable);
 }
}

Yogidham, kalawad road, RAJKOT 76

Atmiya Infotech

First aMethod sets aVariable (the one declared in ASillierClass that
hides the one declared in ASillyClass) to false. Next aMethod invoked
its overridden method with this statement:
super.aMethod();
This sets the hidden version of the aVariable (the one declared in
ASillyClass) to true. Then aMethod displays both versions of aVariable
which have different values:
false
true

class M100 {
 int i = 100;
}

class M200 extends M100 {
 int i = 200;
 void display() {
 System.out.println("i = " + i);
 System.out.println("super.i = " + super.i);
 }
}

class SuperKeyword {
 public static void main(String args[]) {
 M200 m200 = new M200();
 m200.display();
 }
}

Constructor’s hierarchy

class S1 {
 int s1;
 S1() {

Yogidham, kalawad road, RAJKOT 77

Atmiya Infotech

 System.out.println("S1 Constructor");
 s1 = 1;
 }
}

class T1 extends S1 {
 int t1;
 T1() {
 System.out.println("T1 Constructor");
 t1 = 2;
 }
}

class U1 extends T1 {
 int u1;
 U1() {
 System.out.println("U1 Constructor");
 u1 = 3;
 }
}

class InheritanceAndConstructors1 {
 public static void main(String args[]) {
 U1 u1 = new U1();
 System.out.println("u1.s1 = " + u1.s1);
 System.out.println("u1.t1 = " + u1.t1);
 System.out.println("u1.u1 = " + u1.u1);
 }
}

OutPut ::

S1 Constructor
t1 Constructor
u1 Constructor

Yogidham, kalawad road, RAJKOT 78

Atmiya Infotech

u.s1=1
u.t1=2
u.u1=3

Overriding

Methods

The ability of a subclass to override a method in its superclass
allows a class to inherit from a superclass whose behavior is "close
enough" and then override methods as needed.

For example, all classes are descendents of the Object class. Object
contains the toString method, which returns a String object containing
the name of the object's class and its hash code. Most, if not all, classes
will want to override this method and print out something meaningful
for that class.
Let's resurrect the Stack class example and override the toString method.
The output of toString should be a textual representation of the object.
For the Stack class, a list of the items in the stack would be appropriate
public class Stack
{
 private Vector items;

 // code for Stack's methods and constructor not shown

 // overrides Object's toString method
 public String toString() {
 int n = items.size();
 StringBuffer result = new StringBuffer();
 result.append("[");
 for (int i = 0; i < n; i++) {
 result.append(items.elementAt(i).toString());
 if (i < n-1) result.append(",");

Yogidham, kalawad road, RAJKOT 79

Atmiya Infotech

 }
 result.append("]");
 return result.toString();
 }
}
The return type, method name, and number and type of the parameters
for the overriding method must match those in the overridden method.
The overriding method can have a different throws clause as long as it
doesn't declare any types not declared by the throws clause in the
overridden method. Also, the access specifier for the overriding method
can allow more access than the overridden method, but not less. For
example, a protected method in the superclass can be made public but
not private.

Calling the Overridden Method

Sometimes, you don't want to completely override a method.
Rather, you want to add more functionality to it. To do this, simply
call the overridden method using the super keyword. For example,

super.overriddenMethodName();

Variables
Consider the following superclass and subclass pair:
class Super {
 Float aNumber;
}
class Subbie extends Super {
 Float aNumber;
}
The aNumber variable in Subbie hides aNumber in Super. But you can
access Super's aNumber from Subbie with

Yogidham, kalawad road, RAJKOT 80

Atmiya Infotech

super.aNumber
super is a Java language keyword that allows a method to refer to hidden
variables and overridden methods of the superclass.

Abstract Classes

Sometimes, a class that you define represents an abstract concept
and, as such, should not be instantiated. Take, for example, food in
the real world. Have you ever seen an instance of food? No. What
you see instead are instances of carrot, apple, and (our favorite)
chocolate. Food represents the abstract concept of things that we
all can eat. It doesn't make sense for an instance of food to exist.

Similarly in object-oriented programming, you may want to model an
abstract concept without being able to create an instance of it. For
example, the Number class in the java.lang package represents the
abstract concept of numbers. It makes sense to model numbers in a
program, but it doesn't make sense to create a generic number object.
Instead, the Number class makes sense only as a superclass to classes
like Integer and Float, both of which implement specific kinds of
numbers. A class such as Number, which represents an abstract concept
and should not be instantiated, is called an abstract class. An abstract
class is a class that can only be subclassed-- it cannot be instantiated.
To declare that your class is an abstract class, use the keyword abstract
before the class keyword in your class declaration:
abstract class Number {
 . . .
}
If you attempt to instantiate an abstract class, the compiler displays an
error similar to the following and refuses to compile your program:
AbstractTest.java:6: class AbstractTest is an abstract class.
It can't be instantiated.
 new AbstractTest();
 ^
1 error

Yogidham, kalawad road, RAJKOT 81

Atmiya Infotech

Abstract Method

An abstract class may contain abstract methods, that is, methods
with no implementation. In this way, an abstract class can define a
complete programming interface, thereby providing its subclasses
with the method declarations for all of the methods necessary to
implement that programming interface. However, the abstract class
can leave some or all of the implementation details of those
methods up to its subclasses.

Let's look at an example of when you might want to create an abstract
class with an abstract method in it. In an object-oriented drawing
application, you can draw circles, rectangles, lines, Bezier curves, and so
on. Each of these graphic objects share certain states (position, bounding
box) and behavior (move, resize, draw). You can take advantage of these
similarities and declare them all to inherit from the same parent object--
GraphicObject.

However, the graphic objects are also substantially different in many
ways: drawing a circle is quite different from drawing a rectangle. The
graphics objects cannot share these types of states or behavior. On the
other hand, all GraphicObjects must know how to draw themselves; they
just differ in how they are drawn. This is a perfect situation for an
abstract superclass.

First you would declare an abstract class, GraphicObject, to provide
member variables and methods that were wholly shared by all
subclasses, such as the current position and the moveTo method.
GraphicObject also declares abstract methods for methods, such as draw,
that need to be implemented by all subclasses, but are implemented in
entirely different ways (no default implementation in the superclass
makes sense). The GraphicObject class would look something like this:
abstract class GraphicObject {

Yogidham, kalawad road, RAJKOT 82

Atmiya Infotech

 int x, y;
 . . .
 void moveTo(int newX, int newY) {
 . . .
 }
 abstract void draw();
}
Each non-abstract subclass of GraphicObject, such as Circle and
Rectangle, would have to provide an implementation for the draw
method.
class Circle extends GraphicObject {
 void draw() {
 . . .
 }
}
class Rectangle extends GraphicObject {
 void draw() {
 . . .
 }
}
An abstract class is not required to have an abstract method in it. But any
class that has an abstract method in it or that does not provide an
implementation for any abstract methods declared in its superclasses
must be declared as an abstract class.

Using final and Static

A subclass cannot override methods that are declared final in the
superclass (by definition, final methods cannot be overridden). If
you attempt to override a final method, the compiler displays an
error message similar to the following and refuses to compile the
program:

Yogidham, kalawad road, RAJKOT 83

Atmiya Infotech

FinalTest.java:7: Final methods can't be

overridden.

Method void iamfinal() is final in class

ClassWithFinalMethod.

 void iamfinal() {

 ^

1 error

Also, a subclass cannot override methods that are declared
static in the superclass. In other words, a subclass cannot

override a class method. A subclass can hide a static method

in the superclass by declaring a static method in the subclass

with the same signature as the static method in the
superclass.

Packages & Interfaces

Packages

Defining a package
Definition: A package is a collection of related classes and interfaces
providing access protection and namespace management.
The syntax for the package statement follows:
package Identifier;

Yogidham, kalawad road, RAJKOT 84

Atmiya Infotech

The classes and interfaces that are part of the Java platform are members
of various packages that bundle classes by function: fundamental classes
are in java.lang, classes for reading and writing (input and output) are in
java.io, and so on. You can put your classes and interfaces in packages,
too.
Let's look at a set of classes and examine why you might want to put
them in a package. Suppose that you write a group of classes that
represent a collection of graphic objects, such as circles, rectangles,
lines, and points. You also write an interface, Draggable, that classes
implement if they can be dragged with the mouse by the user:
//in the Graphic.java file
public abstract class Graphic {
 . . .
}

//in the Circle.java file
public class Circle extends Graphic implements Draggable {
 . . .
}

//in the Rectangle.java file
public class Rectangle extends Graphic implements Draggable {
 . . .
}

//in the Draggable.java file
public interface Draggable {
 . . .
}
You should bundle these classes and the interface in a package for
several reasons:
You and other programmers can easily determine that these classes and
interfaces are related.
You and other programmers know where to find classes and interfaces
that provide graphics-related functions.

Yogidham, kalawad road, RAJKOT 85

Atmiya Infotech

The names of your classes wont conflict with class names in other
packages, because the package creates a new namespace.
You can allow classes within the package to have unrestricted access to
one another yet still restrict access for classes outside the package.

Interfaces

Basics
An interface defines a protocol of behavior that can be implemented by
any class anywhere in the class hierarchy. An interface defines a set of
methods but does not implement them. A class that implements the
interface agrees to implement all the methods defined in the interface,
thereby agreeing to certain behavior.
Definition: An interface is a named collection of method definitions
(without implementations). An interface can also declare constants.
Because an interface is simply a list of unimplemented, and therefore
abstract, methods, you might wonder how an interface differs from an
abstract class. The differences are significant.

• An interface cannot implement any methods, whereas
an abstract class can.

• A class can implement many interfaces but can have
only one superclass.

• An interface is not part of the class hierarchy. Unrelated
classes can implement the same interface.

Interface References

When you define a new interface, you are defining a new reference
data type. You can use interface names anywhere you can use any
other data type name. data type for the first argument to the
watchStock method in the StockMonitor class is StockWatcher:

public class StockMonitor {

Yogidham, kalawad road, RAJKOT 86

Atmiya Infotech

 public void watchStock(StockWatcher

watcher,

 String tickerSymbol, double

delta) {

 ...

 }

}

Only an instance of a class that implements the interface can be
assigned to a reference variable whose type is an interface name.
So only instances of a class that implements the StockWatcher
interface can register to be notified of stock value changes.
StockWatcher objects are guaranteed to have a valueChanged
method.

Applying Interfaces

An interface defines a protocol of behavior. A class that

implements an interface adheres to the protocol defined by

that interface. To declare a class that implements an

interface, include an implements clause in the class

declaration. Your class can implement more than one

Yogidham, kalawad road, RAJKOT 87

Atmiya Infotech

interface (the Java platform supports multiple inheritance for

interfaces), so the implements keyword is followed by a

comma-separated list of the interfaces implemented by the

class.

By Convention: The implements clause follows the

extends clause, if it exists.

Here's a partial example of an applet that implements

the StockWatcher interface:

public class StockApplet extends Applet

implements StockWatcher {

 ...

 public void valueChanged(String

tickerSymbol, double newValue) {

 if (tickerSymbol.equals(sunTicker)) {

 ...

 } else if

(tickerSymbol.equals(oracleTicker)) {

 ...

 } else if

(tickerSymbol.equals(ciscoTicker)) {

Yogidham, kalawad road, RAJKOT 88

Atmiya Infotech

 ...

 }

 }

}

Note that this class refers to each constant defined in
StockWatcher,sunTicker, oracle-Ticker, imple name.
Classes that implement an interface inherit the constants
defined within that interface. So those classes can use simple
names to refer to the constants. Any other class can use an
interfaces constants with a qualified name, like this:

StockWatcher.sunTicker

When a class implements an interface, it is essentially

signing a contract. Either the class must implement all the

methods declared in the interface and its superinterfaces, or

the class must be declared abstract. The method signature--

the name and the number and type of arguments in the

class--must match the method signature as it appears in the

interface. The StockApplet implements the StockWatcher

interface, so the applet provides an implementation for the

valueChanged method. The method ostensibly updates the

applets display or otherwise uses this information.

Yogidham, kalawad road, RAJKOT 89

Atmiya Infotech

Interface variables

The interface body contains method declarations for all the

methods included in the interface. A method declaration

within an interface is followed by a semicolon (;) because an

interface does not provide implementations for the methods

declared within it. All methods declared in an interface are

implicitly public and abstract.

An interface can contain constant declarations in addition to

method declarations. All constant values defined in an

interface are implicitly public, static, and final.

Member declarations in an interface disallow the use of

some declaration modifiers; you cannot use transient,

volatile, or synchronized in a member declaration in an

interface. Also, you may not use the private and protected

specifiers when declaring members of an interface.

Interface Inheritance
An interface can extend other interfaces, just as a class can extend or
subclass another class. However, whereas a class can extend only one
other class, an interface can extend any number of interfaces. The list of
superinterfaces is a comma-separated list of all the interfaces extended
by the new interface.

Yogidham, kalawad road, RAJKOT 90

Atmiya Infotech

Exception Handling

Basics

The term exception is shorthand for the phrase "exceptional event."
It can be defined as follows:

Definition: An exception is an event that occurs during the
execution of a program that disrupts the normal flow of
instructions.

Many kinds of errors can cause exceptions--problems ranging from
serious hardware errors, such as a hard disk crash, to simple
programming errors, such as trying to access an out-of-bounds array
element. When such an error occurs within a Java method, the method
creates an exception object and hands it off to the runtime system. The
exception object contains information about the exception, including its
type and the state of the program when the error occurred. The runtime
system is then responsible for finding some code to handle the error. In
Java terminology, creating an exception object and handing it to the
runtime system is called throwing an exception

Often exceptions fall into categories or groups. For example, you
could imagine a group of exceptions, each of which represents a
specific type of error that can occur when manipulating an array:
the index is out of range for the size of the array, the element being
inserted into the array is of the wrong type, or the element being
searched for is not in the array. Furthermore, you can imagine that
some methods would like to handle all exceptions that fall within a
category (all array exceptions), and other methods would like to
handle specific exceptions (just the invalid index exceptions,
please).

Because all exceptions that are thrown within a Java program are
first-class objects, grouping or categorization of exceptions is a
natural outcome of the class hierarchy. Java exceptions must be

Yogidham, kalawad road, RAJKOT 91

Atmiya Infotech

instances of Throwable or any Throwable descendant. As for other
Java classes, you can create subclasses of the Throwable class and
subclasses of your subclasses.

Exception & Error Classes

If you have done any amount of Java programming
at all, you have undoubtedly already encountered
exceptions. Your first encounter with Java exceptions
was probably in the form of an error message from
the compiler like this one:

InputFile.java:11: Exception
java.io.FileNotFoundException
must be caught, or it must be declared
in the throws clause
of this method.
 in = new FileReader(filename);
 ^

This message indicates that the compiler found an
exception that is not being handled. The Java language
requires that a method either catch all "checked"
exceptions (those that are checked by the runtime
system) or specify that it can throw that type of
exception

Class Throwable

Errors

When a dynamic linking failure or some other "hard" failure in the
virtual machine occurs, the virtual machine throws an Error.
Typical Java programs should not catch Errors. In addition, it's
unlikely that typical Java programs will ever throw Errors either.

Yogidham, kalawad road, RAJKOT 92

Atmiya Infotech

Exceptions

Most programs throw and catch objects that derive from the
Exception class. Exceptions indicate that a problem occurred but
that the problem is not a serious systemic problem. Most programs
you write will throw and catch Exceptions.

The Exception class has many descendants defined in the Java
packages. These descendants indicate various types of exceptions
that can occur. For example, IllegalAccessException signals that a
particular method could not be found, and
NegativeArraySizeException indicates that a program attempted to
create an array with a negative size.

Checked Exceptions

Java has different types of exceptions, including I/O Exceptions,
runtime exceptions, and exceptions of your own creation, to name
a few. Of interest to us in this discussion are runtime exceptions.
Runtime exceptions are those exceptions that occur within the Java
runtime system. This includes arithmetic exceptions (such as when
dividing by zero), pointer exceptions (such as trying to access an
object through a null reference), and indexing exceptions (such as
attempting to access an array element through an index that is too
large or too small).

Runtime exceptions can occur anywhere in a program and in a
typical program can be very numerous. The cost of checking for
runtime exceptions often exceeds the benefit of catching or
specifying them. Thus the compiler does not require that you catch
or specify runtime exceptions, although you can. Checked
exceptions are exceptions that are not runtime exceptions and are
checked by the compiler; the compiler checks that these exceptions
are caught or specified.

Yogidham, kalawad road, RAJKOT 93

Atmiya Infotech

Using try … catch

The following example defines and implements a class
named ListOfNumbers. The ListOfNumbers class calls two
methods from classes in the Java packages that can throw
exceptions.

// Note: This class won't compile by design!
// See ListOfNumbersDeclared.java or
ListOfNumbers.java
// for a version of this class that will compile.
import java.io.*;
import java.util.Vector;

public class ListOfNumbers {
 private Vector victor;
 private static final int size = 10;

 public ListOfNumbers () {
 victor = new Vector(size);
 for (int i = 0; i < size; i++)
 victor.addElement(new Integer(i));
 }
 public void writeList() {
 PrintWriter out = new PrintWriter(new
FileWriter("OutFile.txt"));

 for (int i = 0; i < size; i++)
 out.println("Value at: " + i + " = " +
victor.elementAt(i));

 out.close();
 }
}

Yogidham, kalawad road, RAJKOT 94

Atmiya Infotech

Upon construction, ListOfNumbers creates a Vector that
contains ten Integer elements with sequential values 0
through 9. The ListOfNumbers class also defines a method
named writeList that writes the list of numbers into a text file
called OutFile.txt.

The writeList method calls two methods that can throw
exceptions. First, the following line invokes the constructor
for FileWriter, which throws an IOException if the file
cannot be opened for any reason:

out = new PrintWriter(new
FileWriter("OutFile.txt"));

Second, the Vector class's elementAt method throws an
ArrayIndexOutOfBoundsException if you pass in an index
whose value is too small (a negative number) or too large
(larger than the number of elements currently contained by
the Vector). Here's how ListOfNumbers invokes elementAt:

out.println("Value at: " + i + " = " +
victor.elementAt(i));

The first step in constructing an exception handler is to enclose the
statements that might throw an exception within a try block. In
general, a try block looks like this:

try {
 Java statements
}

The segment of code labelled Java statements is composed of one or
more legal Java statements that could throw an exception

Yogidham, kalawad road, RAJKOT 95

Atmiya Infotech

To construct an exception handler for the writeList method from
the ListOfNumbers class, you need to enclose the exception-
throwing statements of the writeList method within a try block.
There is more than one way to accomplish this task. You could put
each statement that might potentially throw an exception within its
own try statement, and provide separate exception handlers for
each try. Or you could put all of the writeList statements within a
single try statement and associate multiple handlers with it. The
following listing uses one try statement for the entire method
because the code tends to be easier to read.

PrintWriter out = null;

try {
 System.out.println("Entering try statement");
 out = new PrintWriter(
 new FileWriter("OutFile.txt"));

 for (int i = 0; i < size; i++)
 out.println("Value at: " + i + " = " +
victor.elementAt(i));
}

The try statement governs the statements enclosed within it and
defines the scope of any exception handlers associated with it. In
other words, if an exception occurs within the try statement, that
exception is handled by the appropriate exception handler
associated with this try statement.

A try statement must be accompanied by at least one catch block or
one finally block

Yogidham, kalawad road, RAJKOT 96

Atmiya Infotech

Multiple Catch Statements

The catch block contains a series of legal Java statements. These
statements are executed if and when the exception handler is
invoked. The runtime system invokes the exception handler when
the handler is the first one in the call stack whose type matches that
of the exception thrown.

The writeList method from the ListOfNumbers class uses two
exception handlers for its try statement, with one handler for each
of the two types of exceptions that can be thrown within the try
block -- ArrayIndexOutOfBoundsException and IOException.

try {
 . . .
} catch (ArrayIndexOutOfBoundsException e) {
 System.err.println("Caught
ArrayIndexOutOfBoundsException: " +
 e.getMessage());
} catch (IOException e) {
 System.err.println("Caught IOException: " +
 e.getMessage());
}

Throw, Throws & Finally Statements

All Java methods use the throw statement to throw an exception.
The throw statement requires a single argument: a throwable
object. In the Java system, throwable objects are instances of any
subclass of the Throwable class. Here's an example of a throw
statement:

throw someThrowableObject;

Yogidham, kalawad road, RAJKOT 97

Atmiya Infotech

If you attempt to throw an object that is not throwable, the
compiler refuses to compile your program and displays an error
message similar to the following:

testing.java:10: Cannot throw class java.lang.Integer;
it must be a subclass of class java.lang.Throwable.

 throw new Integer(4);
 ^

The following method is taken from a class that implements a
common stack object. The pop method removes the top element
from the stack and returns it:

public Object pop() throws EmptyStackException {
 Object obj;

 if (size == 0)
 throw new EmptyStackException();

 obj = objectAt(size - 1);
 setObjectAt(size - 1, null);
 size--;
 return obj;
}

The pop method checks to see if there are any elements on the
stack. If the stack is empty (its size is equal to 0), then pop
instantiates a new EmptyStackException object and throws it. The
EmptyStackException class is defined in the java.util package.

Yogidham, kalawad road, RAJKOT 98

Atmiya Infotech

Later pages really need to remember is that you can throw only
objects that inherit from the java.lang.Throwable class.

You'll notice that the declaration of the pop method contains
this clause:

throws EmptyStackException

The throws clause specifies that the method can throw an
EmptyStackException. As you know, the Java language
requires that methods either catch or specify all checked
exceptions that can be thrown within the scope of that
method. You do this with the throws clause of the method
declaration

The finally Block

Java's finally block provides a mechanism that allows your method
to clean up after itself regardless of what happens within the try
block. Use the finally block to close files or release other system
resources.

The runtime system always executes the statements within the
finally block regardless of what happens within the try block.
Regardless of whether control exits the method's try block, the
code within the finally block will be executed.

This is the finally block for the writeList method. It cleansup and
closes the PrintWriter.

finally {

 if (out != null) {

Yogidham, kalawad road, RAJKOT 99

Atmiya Infotech

 System.out.println("Closing PrintWriter");

 out.close();
 } else {
 System.out.println("PrintWriter not open");
 }
}

Java’s Built in Exception
AclNotFoundException, ActivationException,
AlreadyBoundException, ApplicationException, AWTException,
BadLocationException, ClassNotFoundException,
CloneNotSupportedException, DataFormatException,
ExpandVetoException, FontFormatException,
GeneralSecurityException, IllegalAccessException,
InstantiationException, InterruptedException,
IntrospectionException, InvalidMidiDataException,
InvocationTargetException, IOException, LastOwnerException,
LineUnavailableException, MidiUnavailableException,
MimeTypeParseException, NamingException,
NoninvertibleTransformException, NoSuchFieldException,
NoSuchMethodException, NotBoundException,
NotOwnerException, ParseException, PrinterException,
PrivilegedActionException, PropertyVetoException,
RemarshalException, RuntimeException,
ServerNotActiveException, SQLException,
TooManyListenersException, UnsupportedAudioFileException,
UnsupportedFlavorException,
UnsupportedLookAndFeelException, UserException

Yogidham, kalawad road, RAJKOT 100

Atmiya Infotech

Java.lang.*

Interfaces

Cloneable
A class implements the Cloneable interface to indicate to the
Object.clone() method that it is legal for that method to make a field-for-
field copy of instances of that class.
Attempts to clone instances that do not implement the Cloneable
interface result in the exception CloneNotSupportedException being
thrown.
The interface Cloneable declares no methods.

Comparable
This interface imposes a total ordering on the objects of each class that
implements it. This ordering is referred to as the class's natural ordering,
and the class's compareTo method is referred to as its natural
comparison method.
Lists (and arrays) of objects that implement this interface can be sorted
automatically by Collections.sort (and Arrays.sort). Objects that
implement this interface can be used as keys in a sorted map or elements
in a sorted set, without the need to specify a comparator.
A class's natural ordering is said to be consistent with equals if and only
if (e1.compareTo((Object)e2)==0) has the same boolean value as
e1.equals((Object)e2) for every e1 and e2 of class C.

It is strongly recommended (though not required) that natural orderings
be consistent with equals. This is so because sorted sets (and sorted
maps) without explicit comparators behave "strangely" when they are
used with elements (or keys) whose natural ordering is inconsistent with
equals. In particular, such a sorted set (or sorted map) violates the
general contract for set (or map), which is defined in terms of the equals
operation.

Yogidham, kalawad road, RAJKOT 101

Atmiya Infotech

For example, if one adds two keys a and b such that (a.equals((Object)b)
&& a.compareTo((Object)b) != 0) to a sorted set that does not use an
explicit comparator, the second add operation returns false (and the size
of the sorted set does not increase) because a and b are equivalent from
the sorted set's perspective.

Virtually all Java core classes that implement comparable have natural
orderings that are consistent with equals. One exception is
java.math.BigDecimal, whose natural ordering equates BigDecimals
with equal values and different precisions (such as 4.0 and 4.00).

For the mathematically inclined, the relation that defines the natural
ordering on a given class C is:

 {(x, y) such that x.compareTo((Object)y) <= 0}.

The quotient for this total order is:
 {(x, y) such that x.compareTo((Object)y) == 0}.

It follows immediately from the contract for compareTo that the quotient
is an equivalence relation on C, and that the natural ordering is a total
order on C. When we say that a class's natural ordering is consistent with
equals, we mean that the quotient for the natural ordering is the
equivalence relation defined by the class's equals(Object) method:
 {(x, y) such that x.equals((Object)y)}.

Runnable

The Runnable interface provides a common approach to identifying the
code to be executed as part of an active thread. It consists of a single
method, run(), which is executed when a thread is activated. The
Runnable interface is implemented by the Thread class and by other
classes that support threaded execution.

Yogidham, kalawad road, RAJKOT 102

Atmiya Infotech

Classes

Object

Object and Class are two of the most important classes in the Java API.
The Object class is at the top of the Java class hierarchy. All classes are
subclasses of Object and therefore inherit its methods. The Class class is
used to provide class descriptors for all objects created during Java
program execution.

The Object class does not have any variables and has only one
constructor. However, it provides 11 methods that are inherited by all
Java classes and that support general operations that are used with all
objects. For example, the equals() and hashCode() methods are used to
construct hash tables of Java objects. Hash tables are like arrays, but
they are indexed by key values and dynamically grow in size. They
make use of hash functions to quickly access the data that they contain.
The hashCode() method creates a hash code for an object

The clone() method creates an identical copy of an object. The object
must implement the Cloneable interface. This interface is defined within
the java.lang package. It contains no methods and is used only to
differentiate cloneable from noncloneable classes.

The getClass() method identifies the class of an object by returning an
object of Class

The toString() method creates a String representation of the value of an
object. This method is handy for quickly displaying the contents of an
object. When an object is displayed, using print() or println(), the
toString() method of its class is automatically called to convert the
object into a string before printing. Classes that override the toString()
method can easily provide a custom display for their objects.

The finalize() method of an object is executed when an object is
garbage-collected. The method performs no action, by default, and needs

Yogidham, kalawad road, RAJKOT 103

Atmiya Infotech

to be overridden by any class that requires specialized finalization
processing.

The Object class provides three wait() and two notify() methods that
support thread control. These methods are implemented by the Object
class so that they can be made available to threads that are not created
from subclasses of class Thread. The wait() methods cause a thread to
wait until it is notified or until a specified amount of time has elapsed.
The notify() methods are used to notify waiting threads that their wait is
over.

Number

The Number class is an abstract numeric class that is subclassed by
Integer, Long, Float, and Double. It provides four methods that support
conversion of objects from one class to another.

Wrapper Classes
Variables that are declared using the primitive Java types are not objects
and cannot be created and accessed using methods. Primitive types also
cannot be subclassed. To get around the limitations of primitive types,
the java.lang package defines class wrappers for these types.

Byte and Short

The Byte and Short classes wrap the Byte and Short primitive types.
They provide the MIN_VALUE and MAX_VALUE constants, as well
as a number of type and class testing and conversion methods. The
parseByte() and parseShort() methods are used to parse String objects
and convert them to Integer and Long objects.

Yogidham, kalawad road, RAJKOT 104

Atmiya Infotech

Integer and Long

The Integer and Long classes wrap the int and long primitive types.
They provide the MIN_VALUE and MAX_VALUE constants, as well
as a number of type and class testing and conversion methods. The
parseInt() and parseLong() methods are used to parse String objects and
convert them to Integer and Long objects.

Float and Double

The Double and Float classes wrap the double and float primitive types.
They provide the MIN_VALUE, MAX_VALUE,
POSITIVE_INFINITY, and NEGATIVE_INFINITY constants, as well
as the NaN (not-a-number) constant. NaN is used as a value that is not
equal to any value, including itself. These classes provide a number of
type and class testing and conversion methods, including methods that
support conversion to and from integer bit representations.

Character

The Character class is a wrapper for the char primitive type. It provides
several methods that support case, type, and class testing, and
conversion. Check out the API pages on these methods. We'll use some
of them in the upcoming example.

Boolean
The Boolean class is a wrapper for the boolean primitive type. It
provides the getBoolean(), toString(), and booleanValue() methods to
support type and class conversion. The toString(), equals(), and
hashCode() methods override those of class Object.

Yogidham, kalawad road, RAJKOT 105

Atmiya Infotech

Class
The Class class provides eight methods that support the runtime
processing of an object's class and interface information. This class does
not have a constructor. Objects of this class, referred to as class
descriptors, are automatically created and associated with the objects to
which they refer. Despite their name, class descriptors are used for
interfaces as well as classes.
The getName() and toString() methods return the String containing the
name of a class or interface. The toString() method differs in that it
prepends the string class or interface, depending on whether the class
descriptor is a class or an interface. The static forName() method is used
to obtain a class descriptor for the class specified by a String object.
The getSuperclass() method returns the class descriptor of the superclass
of a class. The isInterface() method identifies whether a class descriptor
applies to a class or an interface. The getInterface() method returns an
array of Class objects that specify the interfaces of a class, if any.
The newInstance() method creates an object that is a new instance of the
specified class. It can be used in lieu of a class's constructor, although it
is generally safer and clearer to use a constructor rather than
newInstance().
The getClassLoader() method returns the class loader of a class, if one
exists. Classes are not usually loaded by a class loader. However, when a
class is loaded from outside the CLASSPATH, such as over a network, a
class loader is used to convert the class byte stream into a class
descriptor. The ClassLoader class is covered later in this .

Math

The Math class provides an extensive set of mathematical methods in the
form of a static class library. It also defines the mathematical constants E
and PI. The supported methods include arithmetic, trigonometric,
exponential, logarithmic, random number, and conversion routines. You
should browse the API page of this class to get a feel for the methods it
provides. The example only touches on a few of these methods.

Yogidham, kalawad road, RAJKOT 106

Atmiya Infotech

The source code of the MathApp program.

import java.lang.System;
import java.lang.Math;

public class MathApp {
 public static void main(String args[]) {
 System.out.println(Math.E);
 System.out.println(Math.PI);
 System.out.println(Math.abs(-1234));
 System.out.println(Math.cos(Math.PI/4));
 System.out.println(Math.sin(Math.PI/2));
 System.out.println(Math.tan(Math.PI/4));
 System.out.println(Math.log(1));
 System.out.println(Math.exp(Math.PI));
 for(int i=0;i<5;++i)
 System.out.print(Math.random()+" ");
 System.out.println();

}

}

This program prints the constants e and �, |-1234|, cos(�/4), sin(�/2),
tan(�/4), ln(1), e�, and then five random double numbers between 0.0
and 1.1. Its output is as follows:

2.71828
3.14159
1234
0.707107
1
1
0
23.1407
0.831965 0.573099 0.0268818 0.378625 0.164485

Yogidham, kalawad road, RAJKOT 107

Atmiya Infotech

The random numbers you generate will almost certainly differ from the
ones shown here

String and StringBuffer

The String and StringBuffer classes are used to support operations on
strings of characters. The String class supports constant (unchanging)
strings, whereas the StringBuffer class supports growable, modifiable
strings. String objects are more compact than StringBuffer objects, but
StringBuffer objects are more flexible.

String Literals
String literals are strings that are specified using double quotes. "This is
a string" and "xyz" are examples of string literals. String literals are
different than the literal values used with primitive types. When the
javac compiler encounters a String literal, it converts it to a String
constructor. For example, the following:

String str = "text";

is equivalent to this:

String str = new String("text");

The fact that the compiler automatically supplies String constructors
allows you to use String literals everywhere that you could use objects
of the String class.

String Constructors
The String class provides seven constructors for the creation and
initialization of String objects. These constructors allow strings to be
created from other strings, string literals, arrays of characters, arrays of
bytes, and StringBuffer objects. Browse through the API page for the
String class to become familiar with these constructors.

Yogidham, kalawad road, RAJKOT 108

Atmiya Infotech

String Access Methods
The String class provides a very powerful set of methods for working
with String objects. These methods allow you to access individual
characters and substrings; test and compare strings; copy, concatenate,
and replace parts of strings; convert and create strings; and perform
other useful string operations.
The most important String methods are the length() method, which
returns an integer value identifying the length of a string; the charAt()
method, which allows the individual characters of a string to be
accessed; the substring() method, which allows substrings of a string to
be accessed; and the valueOf() method, which allows primitive data
types to be converted into strings.
In addition to these methods, the Object class provides a toString()
method for converting other objects to String objects. This method is
often overridden by subclasses to provide a more appropriate object-to-
String conversion

String Access Methods
The String class provides a very powerful set of methods for working
with String objects. These methods allow you to access individual
characters and substrings; test and compare strings; copy, concatenate,
and replace parts of strings; convert and create strings; and perform
other useful string operations.
The most important String methods are the length() method, which
returns an integer value identifying the length of a string; the charAt()
method, which allows the individual characters of a string to be
accessed; the substring() method, which allows substrings of a string to
be accessed; and the valueOf() method, which allows primitive data
types to be converted into strings.
In addition to these methods, the Object class provides a toString()
method for converting other objects to String objects. This method is
often overridden by subclasses to provide a more appropriate object-to-
String conversion.

Yogidham, kalawad road, RAJKOT 109

Atmiya Infotech

Character and Substring Methods
Several String methods allow you to access individual characters and
substrings of a string. These include charAt(), getBytes(), getChars(),
indexOf(), lastIndexOf(), and substring(). Whenever you need to
perform string manipulations, be sure to check the API documentation to
make sure that you don't overlook an easy-to-use, predefined String
method.

String Comparison and Test Methods
Several String methods allow you to compare strings, substrings, byte
arrays, and other objects with a given string. Some of these methods are
compareTo(), endsWith(), equals(), equalsIgnoreCase(),
regionMatches(), and startsWith().

Copy, Concatenation, and Replace Methods
The following methods are useful for copying, concatenating, and
manipulating strings: concat(), copyValueOf(), replace(), and trim().

String Conversion and Generation
There are a number of string methods that support String conversion.
These are intern(), toCharArray(), toLowerCase(), toString(),
toUpperCase(), and valueOf(). You explore the use of some of these
methods in the following example.

The source code of the StringApp program.

import java.lang.System;
import java.lang.String;

public class StringApp {
 public static void main(String args[]) {
 String s = " Java Developer's Guide ";
 System.out.println(s);
 System.out.println(s.toUpperCase());
 System.out.println(s.toLowerCase());
 System.out.println("["+s+"]");

Yogidham, kalawad road, RAJKOT 110

Atmiya Infotech

 s=s.trim();
 System.out.println("["+s+"]");
 s=s.replace('J','X');
 s=s.replace('D','Y');
 s=s.replace('G','Z');
 System.out.println(s);
 int i1 = s.indexOf('X');
 int i2 = s.indexOf('Y');
 int i3 = s.indexOf('Z');
 char ch[] = s.toCharArray();
 ch[i1]='J';
 ch[i2]='D';
 ch[i3]='G';
 s = new String(ch);
 System.out.println(s);
 }
}

The program's output is as follows:

 Java Developer's Guide
 JAVA DEVELOPER'S GUIDE
 java developer's guide
[Java Developer's Guide]
[Java Developer's Guide]
Xava Yeveloper's Zuide
Java Developer's Guide

The StringBuffer class is the force behind the scene for most complex
string manipulations. The compiler automatically declares and
manipulates objects of this class to implement common string
operations.

The StringBuffer class provides three constructors: an empty
constructor, an empty constructor with a specified initial buffer length,
and a constructor that creates a StringBuffer object from a String object.

Yogidham, kalawad road, RAJKOT 111

Atmiya Infotech

In general, you will find yourself constructing StringBuffer objects from
String objects, and the last constructor will be the one you use most
often.

The StringBuffer class provides several versions of the append() method
to convert and append other objects and primitive data types to
StringBuffer objects. It provides a similar set of insert() methods for
inserting objects and primitive data types into StringBuffer objects. It
also provides methods to access the character-buffering capacity of
StringBuffer and methods for accessing the characters contained in a
string. It is well worth a visit to the StringBuffer API pages to take a
look at the methods that it has to offer.

The source code of the StringBufferApp program.

import java.lang.System;
import java.lang.String;
import java.lang.StringBuffer;

public class StringBufferApp {
 public static void main(String args[]) {
 StringBuffer sb = new StringBuffer(" is ");
 sb.append("Hot");
 sb.append('!');
 sb.insert(0,"Java");
 sb.append('\n');
 sb.append("This is ");
 sb.append(true);
 sb.setCharAt(21,'T');
 sb.append('\n');
 sb.append("Java is #");
 sb.append(1);
 String s = sb.toString();
 System.out.println(s);

Yogidham, kalawad road, RAJKOT 112

Atmiya Infotech

 }
}

The program creates a StringBuffer object using the string " is ". It
appends the string "Hot" using the append() method and the character '!'
using an overloaded version of the same method. The insert() method is
used to insert the string "Java" at the beginning of the string buffer.

Three appends are used to tack on a newline character (\n), the string
"This is ", and the boolean value true. The append() method is
overloaded to support the appending of the primitive data types as well
as arbitrary Java objects.

The setCharAt() method is used to replace the letter 't' at index 21 with
the letter 'T'. The charAt() and setCharAt() methods allow StringBuffer
objects to be treated as arrays of characters.

Finally, another newline character is appended to sb, followed by the
string "Java is #" and the int value 1. The StringBuffer object is then
converted to a string and displayed to the console window.

The output of the program is as follows:

Java is Hot!
This is True
Java is #1

System

The System class provides an interface to a number of useful system
resources. Among these are the System.in and System.out input and
output streams. The System.out stream was used in the preceding
example. The following example illustrates the use of System.in.

This program builds on what you learned from HelloWorldApp.
HelloWorldApp just displayed a message to your console window. The
ICanReadApp program will read your name from the keyboard

Yogidham, kalawad road, RAJKOT 113

Atmiya Infotech

characters you type and display it on the console window. It introduces
the concepts of identifiers, variable declarations, Java keywords, and
object constructors.

Use your text editor to create a file called ICanReadApp.java with the
Java program.

The source code of the I Can Read! program.

// ICanReadApp.java

import java.lang.System;
import java.io.DataInputStream;
import java.io.IOException;
class ICanReadApp {
 public static void main (String args[]) throws IOException {
 System.out.print("Enter your name: ");
 System.out.flush();
 String name;
 DataInputStream keyboardInput = new
DataInputStream(System.in);
 name=keyboardInput.readLine();
 System.out.println("Your name is: "+name);
 }
}

Save the file in your c:\java\jdg\ch04 directory. Compile it with the
command line

javac ICanReadApp.java

This will produce a file named ICanReadApp.class that contains the
binary compiled code for your program. Run the program with the
command line

java ICanReadApp

Yogidham, kalawad road, RAJKOT 114

Atmiya Infotech

Make sure that your CLASSPATH is correctly set so that Java can find
the ICanReadApp class.

The program will prompt you to enter your name. When you enter your
name, the program will display it to you. Here is a sample program run:

C:\java\jdg\ch04>java ICanReadApp
Enter your name: Jamie
Your name is: Jamie

It may seem that you're going nowhere fast, but this little program
illustrates some more basic Java syntax. Hang in there-by the time you
get to the end of the chapter, you'll be having fun with Java console
programming.

Thread

The Thread class is used to construct and access individual threads of
execution that are executed as part of a multithreaded program. It
defines the priority constants, MIN_PRIORITY, MAX_PRIORITY, and
NORM_PRIORITY, that are used to control task scheduling. It provides
seven constructors for creating instances of class Thread. The four
constructors with the Runnable parameters are used to construct threads
for classes that do not subclass the Thread class. The other constructors
are used for the construction of Thread objects from Thread subclasses.

Thread supports many methods for accessing Thread objects. These
methods provide the capabilities to work with a thread's group; obtain
detailed information about a thread's activities; set and test a thread's
properties; and cause a thread to wait, be interrupted, or be destroyed.

Yogidham, kalawad road, RAJKOT 115

Atmiya Infotech

ThreadGroup

The ThreadGroup class is used to encapsulate a group of threads as a
single object so that they can be accessed as a single unit. A number of
access methods are provided for manipulating ThreadGroup objects.
These methods keep track of the threads and thread groups contained in
a thread group and perform global operations on all threads in the group.
The global operations are group versions of the operations that are
provided by the Thread class.

Throwable

The Throwable class is at the top of the Java error-and-exception
hierarchy. It is extended by the Error and Exception classes and provides
methods that are common to both classes. These methods consist of
stack tracing methods, the getMessage() method, and the toString()
method, which is an override of the method inherited from the Object
class. The getMessage() method is used to retrieve any messages that are
supplied in the creation of Throwable objects.

The fillInStackTrace() and printStackTrace() methods are used to add
information to supply and print information that is used to trace the
propagation of exceptions and errors throughout a program's execution.

The Error Class
The Error class is used to provide a common superclass to define
abnormal and fatal events that should not occur. It provides two
constructors and no other methods. Four major classes of errors extend
the Error class: AWTError, LinkageError, ThreadDeath, and
VirtualMachineError.
The AWTError class identifies fatal errors that occur in the Abstract
Window Toolkit packages. It is a single identifier for all AWT errors
and is not subclassed.

Yogidham, kalawad road, RAJKOT 116

Atmiya Infotech

The LinkageError class is used to define errors that occur as the result of
incompatibilities between dependent classes. These incompatibilities
result when a class X that another class Y depends on is changed before
class Y can be recompiled. The LinkageError class is extensively
subclassed to identify specific manifestations of this type of error.

The ThreadDeath error class is used to indicate that a thread has been
stopped. Instances of this class can be caught and then rethrown to
ensure that a thread is gracefully terminated, although this is not
recommended. The ThreadDeath class is not subclassed.

The VirtualMachineError class is used to identify fatal errors occurring
in the operation of the Java virtual machine. It has four subclasses:
InternalError, OutOfMemoryError, StackOverflowError, and
UnknownError.

The Exception Class

The Exception class provides a common superclass for the exceptions
that can be defined for Java programs and applets. There are nine
subclasses of exceptions that extend the Exception class. These
exception subclasses are further extended by lower-level subclasses.

Java.util.*

Basics
The core collection interfaces are the interfaces used to manipulate
collections, and to pass them from one method to another. The basic
purpose of these interfaces is to allow collections to be manipulated
independently of the details of their representation. The core collection
interfaces are the heart and soul of the collections framework. When you
understand how to use these interfaces, you know most of what there is

Yogidham, kalawad road, RAJKOT 117

Atmiya Infotech

to know about the framework. The core collections interfaces are shown
below:

Interfaces

Collection

The Collection interface is the root of the collection
hierarchy. A Collection represents a group of objects, known

as its elements. Some Collection implementations allow
duplicate elements and others do not. Some are ordered and
others unordered. The JDK doesn't provide any direct
implementations of this interface: It provides
implementations of more specific subinterfaces like Set and

List. This interface is the least common denominator that all
collections implement. Collection is used to pass collections
around and manipulate them when maximum generality is
desired.

Yogidham, kalawad road, RAJKOT 118

http://www.buginword.com

Atmiya Infotech

List

A List is an ordered collection (sometimes called a
sequence). Lists can contain duplicate elements. The user of a
List generally has precise control over where in the List each
element is inserted. The user can access elements by their
integer index (position). If you've used Vector , you're
already familiar with the general flavor of List.

Set

A Set is a collection that cannot contain duplicate elements.
As you might expect, this interface models the mathematical
set abstraction. It is used to represent sets like the cards
comprising a poker hand, the courses making up a student's
schedule, or the processes running on a machine.

SortedSet

A SortedSet is a Set that maintains its elements in ascending
order. Several additional operations are provided to take
advantage of the ordering. The SortedSet interface is used for
things like word lists and membership rolls.

Map

A Map is an object that maps keys to values. Maps cannot
contain duplicate keys: Each key can map to at most one
value. If you've used Hashtable , you're already familiar with
the general flavor of Map.

Yogidham, kalawad road, RAJKOT 119

http://www.buginword.com
http://www.buginword.com
http://www.buginword.com
http://www.buginword.com
http://www.buginword.com

Atmiya Infotech

SortedMap

A SortedMap is a Map that maintains its mappings in

ascending key order. It is the Map analogue of SortedSet.

The SortedMap interface is used for apps like dictionaries
and telephone directories.

Enumeration and Iterator

The object returned by the iterator method deserves special
mention. It is an Iterator , which is very similar to an
Enumeration , but differs in two respects:

• Iterator allows the caller to remove elements from the
underlying collection during the iteration with well-
defined semantics.

• Method names have been improved.

The first point is important: There was no safe way to remove elements
from a collection while traversing it with an Enumeration. The
semantics of this operation were ill-defined, and differed from
implementation to implementation

Classes

All Implementing Classes of Collection & Map

Vector
Java doesn't include dynamically linked lists, queues, or other data
structures of that type. Instead, the designers of Java envisioned the
Vector class, which handles the occasions when you need to
dynamically store objects. Of course, there are positive and negative

Yogidham, kalawad road, RAJKOT 120

Atmiya Infotech

consequences of this decision by the designers at Sun. On the positive
side, the Vector class contributes to the simplicity of the language. The
major negative point is that, at face value, the Vector class severely
limits programmers from using more sophisticated programs.

In any case, the Vector class implements a dynamically allocated list of
objects. It attempts to optimize storage by increasing the storage
capacity of the list when needed by increments larger than just one
object. Typically, with this mechanism, there is some excess capacity in
the list. When this capacity is exhausted, the list is reallocated to add
another block of objects at the end of the list. Setting the capacity of the
Vector object to the needed size before inserting a large number of
objects reduces the need for incremental reallocation. Because of this
mechanism, it is important to remember that the capacity (the available
elements in the Vector object) and the size (the number of elements
currently stored in the Vector object) usually are not the same.

Suppose that a Vector with capacityIncrement equal to 3 has been
created. As objects are added to the Vector, new space is allocated in
chunks of three objects. After five elements have been added, there is
still room for one more element without the need for any additional
memory allocation.

After the sixth element has been added, there is no more excess capacity.
When the seventh element is added, a new allocation is made to add
three additional elements, giving a total capacity of nine. After the
seventh element is added, there are two remaining unused elements.

The initial storage capacity and the capacity increment can both be
specified in the constructor. Even though the capacity is automatically
increased as needed, the ensureCapacity() method can be used to
increase the capacity to a specific minimum number of elements; the
trimToSize() method can be used to reduce the capacity to the minimum
number of elements needed to store the current amount. New elements
can be added to the Vector using the addElement() and
insertElementAt() methods. The elements passed to be stored in the

Yogidham, kalawad road, RAJKOT 121

Atmiya Infotech

Vector must be derived from type Object. Elements can be changed
using the setElementAt() method. Removal of elements is accomplished
with the removeElement(), removeElementAt(), and
removeAllElements() methods. Elements can be accessed directly using
the elementAt(), firstElement(), and lastElement() methods; elements
can be located using the indexOf() and lastIndexOf() methods.
Information about the size and the capacity of the Vector are returned by
the size() and capacity() methods. The setSize() method can be used to
directly change the size of the Vector.

For example, the Vector1 code in Listing creates a Vector of integers by
adding new elements to the end. Then, using a variety of techniques, it
prints the Vector

import java.lang.Integer;
import java.util.Enumeration;
import java.util.Vector;
class Vector1 {
 public static void main(String args[]){
 Vector v=new Vector(10,10);
 for (int i=0;i<20;i++)
 v.addElement(new Integer(i));
 System.out.println("Vector in original order using an
Enumeration");
 for (Enumeration e=v.elements();e.hasMoreElements();)
 System.out.print(e.nextElement()+" ");
 System.out.println();
 System.out.println("Vector in original order using elementAt");
 for (int i=0;i<v.size();i++)
 System.out.print(v.elementAt(i)+" ");
 System.out.println();
 // Print out the original vector
 System.out.println("\nVector in reverse order using elementAt");
 for (int i=v.size()-1;i>=0;i++)
 System.out.print(v.elementAt(i)+" ");

Yogidham, kalawad road, RAJKOT 122

Atmiya Infotech

 System.out.println();
 // Print out the original vector
 System.out.println("\nVector as a String");
 System.out.println(v.toString());
 }
}
The output from this program looks like this:
Vector in original order using an Enumeration
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Vector in original order using elementAt
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Vector in reverse order using elementAt
19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Vector as a String
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Table The variables and methods available in the Vector interface.
Variable Description

capacityIncrement Size of the incremental allocations, in
elements

elementCount Number of elements in Vector
elementData Buffer in which the elements are stored
Method Description

 Constructors
Vector() Constructs an empty vector

Vector(int) Constructs an empty vector with the specified
storage capacity

Vector(int, int) Constructs an empty vector with the specified
storage capacity and capacity increment

 Methods
addElement(Object) Adds the specified object at the end of the

Yogidham, kalawad road, RAJKOT 123

Atmiya Infotech

Vector
capacity() Returns the capacity of the Vector
clone() Creates a clone of the Vector

contains(Object) Returns true if the specified object is in the
Vector

copyInto(Object[]) Copies the elements of this vector into an
array

elementAt(int) Returns the element at the specified index
elements() Returns an Enumeration of the elements

ensureCapacity(int) Ensures that the Vector has the specified
capacity

firstElement() Returns the first element of the Vector

indexOf(Object) Returns the index of the first occurrence of the
specified object within the Vector

indexOf(Object, int)

Returns the index of the specified object
within the Vector, starting the search at the
index specified and proceeding toward the end
of the Vector

insertElementAt(Object,
int) Inserts an object at the index specified

isEmpty() Returns true if the Vector is empty
lastElement() Returns the last element of the Vector

lastIndexOf(Object) Returns the index of the last occurrence of the
specified object within the Vector

lastIndexOf(Object, int)

Returns the index of the specified object
within the Vector, starting the search at the
index specified and proceeding toward the
beginning of the Vector

removeAllElements() Removes all elements of the Vector
removeElement(Object) Removes the specified object from the Vector

Yogidham, kalawad road, RAJKOT 124

Atmiya Infotech

removeElementAt(int) Removes the element with the specified index
setElementAt(Object,
int)

Stores the object at the specified index in the
Vector

setSize(int) Sets the size of the Vector
size() Returns the number of elements in the Vector
toString() Converts the Vector to a string

trimToSize() Trims the Vector's capacity down to the
specified size

Stack

The stack data structure is key to many programming efforts, ranging
from building compilers to solving mazes. The Stack class in the Java
library implements a Last In, First Out (LIFO) stack of objects. Even
though they are based on (that is, they extend) the Vector class, Stack
objects are typically not accessed in a direct fashion. Instead, values are
pushed onto and popped off the top of the stack. The net effect is that the
values most recently pushed are the first to pop.

The Stack1 code in the example pushes strings onto the stack and then
retrieves them. The strings end up printed in the reverse order from
which they were stored.

Listing Stack1.java: A sample Stack program.
import java.io.DataInputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.util.Stack;
import java.util.StringTokenizer;
class Stack1 {
 public static void main(String args[])
 throws java.io.IOException
 {

Yogidham, kalawad road, RAJKOT 125

Atmiya Infotech

 BufferedReader dis=new BufferedReader(new
InputStreamReader(System.in));
 System.out.println("Enter a sentence: ");
 String s=dis.readLine();
 StringTokenizer st=new StringTokenizer(s);
 Stack stack=new Stack();
 while (st.hasMoreTokens())
 stack.push(st.nextToken());
 while (!stack.empty())
 System.out.print((String)stack.pop()+" ");
 System.out.println();
 }
}
The output from this program looks like this:
Enter a sentence:
The quick brown fox jumps over the lazy dog
dog lazy the over jumps fox brown quick The
Even though Stack objects normally are not accessed in a direct fashion,
it is possible to search the Stack for a specific value using the search()
method. search() accepts an object to find and returns the distance from
the top of the Stack where the object was found. It returns -1 if the
object is not found.
The method peek() returns the top object on the Stack without actually
removing it from the Stack. The peek() method throws an
EmptyStackException if the stack has no items.
Table summarizes the complete interface of the Stack class.

Table 11.12. The methods available in the Stack interface.
Method Description

 Constructor
Stack() Constructs an empty Stack

 Methods
empty() Returns true if the Stack is empty

Yogidham, kalawad road, RAJKOT 126

Atmiya Infotech

peek() Returns the top object on the Stack without removing the
element

pop() Pops an element off the Stack
push(Object) Pushes an element onto the Stack
search(Object) Finds an object on the Stack

Dictionary

The Dictionary class is an abstract class used as a base for the Hashtable
class. It implements a data structure that allows a collection of key and
value pairs to be stored. Any type of object can be used for the keys or
the values. Typically, the keys are used to find a particular
corresponding value.

Because the Dictionary class is an abstract class that cannot be used
directly, the code examples presented in this section cannot actually be
run. They are presented only to explain the purpose and use of the
methods declared by this class. The following code would,
hypothetically, be used to create a Dictionary with these values:

Dictionary products = new Dictionary();
products.put(new Integer(342), "Widget");
products.put(new Integer(124), "Gadget");
products.put(new Integer(754), "FooBar");
The put() method is used to insert a key and value pair into the
Dictionary. Both arguments must be derived from the class Object. The
key is the first argument and the value is the second argument.

A value can be retrieved using the get() method and a specific key to be
found. get() returns the null value if the specified key is not found.
Here's an example:

Yogidham, kalawad road, RAJKOT 127

Atmiya Infotech

String name = products.get(new Integer(124));
if (name != null) {
 System.out.println("Product name for code 124 is " + name);
}

Although an individual object can be retrieved with the get() method, it
is sometimes necessary to access all the keys or all the values. Two
methods, keys() and elements(), return Enumerations that can be used to
access the keys and the values.
Table summarizes the complete interface of the Dictionary class.

Table The methods available in the Dictionary interface.
Method Description

 Constructor
Dictionary() Constructs an empty Dictionary

 Methods
elements() Returns an Enumeration of the values
get(Object) Returns the object associated with the specified key
isEmpty() Returns true if the Dictionary has no elements
keys() Returns an Enumeration of the keys
put(Object,
Object)

Stores the specified key and value pair in the
Dictionary

remove(Object) Removes an element from the Dictionary based on
its key

size() Returns the number of elements stored

Hashtable
The hash table data structure is very useful when searching for and
manipulating data. You should use the Hashtable class if you will be

Yogidham, kalawad road, RAJKOT 128

Atmiya Infotech

storing a large amount of data in memory and then searching it. The time
needed to complete a search of a hash table is decidedly less than what it
takes to search a Vector. Of course, for small amounts of data, it doesn't
make much difference whether you use a hash table or a linear data
structure, because the overhead time is much greater than any search
time would be.

Hash table organization is based on keys, which are computed based on
the data being stored. For example, if you want to insert a number of
words into a hash table, you can base your key on the first letter of the
word. When you come back later to search for a word, you can then
compute the key for the item being sought. By using this key, search
time is drastically reduced because the items are stored based on the
value of their respective key.

The Hashtable class implements a hash table storage mechanism for
storing key and value pairs. Hash tables are designed to quickly locate
and retrieve stored information by using a key. Keys and values can be
of any object type, but the key object's class must implement the
hashCode() and equals() methods.

Table The methods available in the Hashtable interface.
Method Description

 Constructors
Hashtable() Constructs an empty Hashtable

Hashtable(int) Constructs an empty Hashtable with the specified
capacity

Hashtable(int, float) Constructs an empty Hashtable with the given
capacity and load factor

 Methods
clear() Deletes all elements from the Hashtable
clone() Creates a clone of the Hashtable

Yogidham, kalawad road, RAJKOT 129

Atmiya Infotech

contains(Object) Returns true if the specified object is an element of
the Hashtable

containsKey(Object) Returns true if the Hashtable contains the specified
key

elements() Returns an Enumeration of the Hashtable's values

get(Object) Returns the object associated with the specified
key

isEmpty() Returns true if the Hashtable has no elements
keys() Returns an Enumeration of the keys

put(Object, Object) Stores the specified key and value pair in the
Hashtable

rehash() Rehashes the contents of the table into a bigger
table

remove(Object) Removes an element from the Hashtable based on
its key

size() Returns the number of elements stored
toString() Converts the contents to a very long string

Properties

The Properties class is what enables end-users to customize their Java
program. For example, you can easily store values such as foreground
colors, background colors, font defaults, and so on and then have those
values available to be reloaded. This arrangement is most useful for Java
applications, but you can also implement it for applets. If you have an
applet that is regularly used by multiple users, you can keep a properties
file on your server for each different user; the properties file is accessed
each time that user loads the applet.

The Properties class is a Hashtable, which can be repeatedly stored and
restored from a stream. It is used to implement persistent properties. The
Properties class also allows for an unlimited level of nesting, by

Yogidham, kalawad road, RAJKOT 130

Atmiya Infotech

searching a default property list if the required property is not found.
The fact that this class is an extension of the Hashtable class means that
all methods available in the Hashtable class are also available in the
Properties class.

The sample program Properties1 in Listing 11.11 creates two properties
lists. One is the default property list and the other is the user-defined
property list. When the user property list is created, the default
Properties object is passed. When the user property list is searched, if the
key value is not found, the default Properties list is searched.

import java.io.DataInputStream;
import java.lang.Integer;
import java.util.Properties;
class Properties1 {
 public static void main(String args[])
 throws java.io.IOException
 {
 int numElements=4;
 String defaultNames[]={"Red","Green","Blue","Purple"};
 int defaultValues[]={1,2,3,4};
 String userNames[]={"Red","Yellow","Orange","Blue"};
 int userValues[]={100,200,300,400};
 DataInputStream dis=new DataInputStream(System.in);
 Properties defaultProps=new Properties();
 Properties userProps=new Properties(defaultProps);
 for (int i=0;i<numElements;i++){
 defaultProps.put(defaultNames[i],
 Integer.toString(defaultValues[i]));
 userProps.put(userNames[i],
 Integer.toString(userValues[i]));
 }
 System.out.println("Default Properties");
 defaultProps.list(System.out);
 System.out.println("\nUser Defined Properties");

Yogidham, kalawad road, RAJKOT 131

Atmiya Infotech

 userProps.list(System.out);
 String keyValue;
 System.out.println("\nWhich property to find? ");
 keyValue=dis.readLine();
 System.out.println("Property '"+keyValue+"' is '"+
 userProps.getProperty(keyValue)+"'");
 }
}
Notice that the getProperties() method is used instead of the inherited
get() method. The get() method searches only the current Properties
object. The getProperties() method must be used to search the default
Properties list. An alternative form of the getProperties() method has a
second argument: a Properties list that is to be searched instead of the
default specified when the Properties object was created.
The propertyNames() method can be used to return an Enumeration,
which can be used to index all the property names. This Enumeration
includes the property names from the default Properties list. Likewise,
the list() method, which prints the Properties list to the standard output,
lists all the properties of the current Properties object and those in the
default Properties object.
Properties objects can be written to and read from a stream using the
save() and load() methods. In addition to the output or input stream, the
save() method has an additional string argument that is written at the
beginning of the stream as a header comment.

Table The variables and methods available in the Properties interface.
Variable Description
defaults Default Properties list to search

 Constructors
Properties() Constructs an empty property list

Properties(Properties) Constructs an empty property list with the
specified default

Yogidham, kalawad road, RAJKOT 132

Atmiya Infotech

 Methods
getProperty(String) Returns a property given the key
getProperty(String,
String)

Returns a property given the specified key
and default

list(PrintStream) Lists the properties to a stream for debugging
load(InputStream) Reads the properties from an InputStream
propertyNames() Returns an Enumeration all the keys
save(OutputStream,
String) Writes the properties to an OutputStream

StringTokenizer

This section describes the function of the StringTokenizer class, which
also could have been appropriately grouped with the other classes in
Chapter 12, "The I/O Package," because it is so vital to the input and
output functions demonstrated in that chapter. The StringTokenizer class
enables you to parse a string into a number of smaller strings called
tokens. This class works specifically for what is called "delimited text,"
which means that each individual substring of the string is separated by
a delimiter. The delimiter can be anything ranging from an * to
YabaDaba. You simply specify what you want the class to look for when
tokenizing the string.

The delimiter set can be specified when the StringTokenizer object is
created, or it can be specified on a per-token basis. The default delimiter
set is the set of whitespace characters. With this delimiter set, the class
would find all the separate words in a string and tokenize them. For
example, the StringTokenizer1 code in Listing prints out each word of
the string on a separate line.

A sample StringTokenizer program.
import java.io.DataInputStream;
import java.io.BufferedReader;

Yogidham, kalawad road, RAJKOT 133

Atmiya Infotech

import java.io.InputStreamReader;
import java.util.StringTokenizer;
class StringTokenizer1 {
 public static void main(String args[])
 throws java.io.IOException
 {
 BufferedReader dis=new BufferedReader(new
InputStreamReader(System.in));
 System.out.println("Enter a sentence: ");
 String s=dis.readLine();
 StringTokenizer st=new StringTokenizer(s);
 while (st.hasMoreTokens())
 System.out.println(st.nextToken());
 }
}

Here is the output from this listing:

Enter a sentence:
Four score and seven
Four
score
and
seven

Pure excitement. The method countTokens() returns the number of
tokens remaining in the string using the current delimiter set--that is, the
number of times nextToken() can be called before generating an
exception. This is an efficient method because it does not actually
construct the substrings that nextToken() must generate.

In addition to extending the java.lang.Object class, the StringTokenizer
class implements the java.util.Enumeration interface.

Table summarizes the methods of the StringTokenizer class.

Yogidham, kalawad road, RAJKOT 134

Atmiya Infotech

Table The methods available in the StringTokenizer interface.
Method Description

 Constructors
StringTokenizer Constructs a StringTokenizer given a
(String) string using whitespace as delimiters
StringTokenizer Constructs a StringTokenizer given a
(String, String) string and a delimiter set
StringTokenizer Constructs a StringTokenizer given a

(String, String,
boolean)

string and a delimiter set; the final parameter is a
boolean value which, if true, says that the
delimiters must be returned as tokens (if this
parameter is false, the tokens are not returned)

 Methods

countTokens() Returns the number of tokens remaining in the
string

hasMoreTokens() Returns true if more tokens exist
nextToken() Returns the next token of the string
nextToken(String) Returns the next token, given a new delimiter set

hasMoreElements() Returns true if more elements exist in the
enumeration

nextElement() Returns the next element of the enumeration using
the current delimiter set

Date

Before Java 1.1, the Date class was an extremely important class for
handling dates and times. However, it was weak in some areas such as
internationalization and dealing with the differences in daylight saving
time in different locations.

Yogidham, kalawad road, RAJKOT 135

Atmiya Infotech

With Java 1.1, the Date class has been relegated to just storing the exact
time. Most of the old Date class methods have been deprecated and
should no longer be used. All the methods for converting time between
binary and human-readable form are now handled by the Calendar,
GregorianCalendar, TimeZone, SimpleTimeZone, and Locale
classes.GregorianCalendar

The default constructor is used when the current date and time are
required. The other constructor takes a millisecond representation of
time and creates a Date object based on it.

Table Useable methods available in the Date interface.
Method Description

 Constructors
Date() Constructs a date using today's date and time
Date(long) Constructs a date using a single UTC value

 Methods
after(Date) Returns true if the date is later than the specified date
before(Date) Returns true if the date is earlier than the specified date
equals(Object) Returns true if the date and the specified date are equal
getTime() Returns the time as a single UTC value
hashCode() Computes a hash code for the date
setTime(long) Sets the time using a single UTC value
toString() Converts a date to text using UNIX ctime() conventions

You will also find the before() and after() functions useful. They enable
you to send in another instance of the Date class and compare that date
to the value in the calling instance

Yogidham, kalawad road, RAJKOT 136

Atmiya Infotech

Calendar

The Calendar class is an abstract class used to convert dates. You can
use this class to convert a Date object to fields, such as YEAR,
MONTH, HOUR, and so on. You can also use these fields to update a
Date object.

In the API definition, only one subclass of Calendar exists:
GregorianCalendar. Because most people and virtually all businesses in
the world use the Gregorian calendar,

Table 11.3 summarizes the methods available in the Calendar class.

Table 11.3. Methods in the Calendar class.
Method Description

 Constructors

Calendar() Creates a calendar with the default
TimeZone and Locale

Calendar(TimeZone,Locale) Creates a calendar with the given
TimeZone and Locale

 Static Methods

getDefault() Returns a calendar with the default
TimeZone and Locale

getDefault(TimeZone) Returns a calendar with the default
Locale and given TimeZone

getDefault(Locale) Returns a calendar with the given
Locale and default TimeZone

getDefault(TimeZone,Locale) Returns a calendar with the given
TimeZone and Locale

getAvailableLocales() Returns an array of all available
locales

 Methods

Yogidham, kalawad road, RAJKOT 137

Atmiya Infotech

getTime() Returns the date and time
setTime(Date) Sets the date and time
get(byte) Returns the specified field

set(byte,int) Sets the specified field to the
specified value

set(int,int,int) Sets the year, month, and date

set(int,int,int,int,int) Sets the year, month, date, hour,
and minute

set(int,int,int,int,int,int) Sets the year, month, date, hour,
minute, and second

clear() Clears all fields
clear(byte) Clears the specified field

isSet(int) Returns true if the specified field is
set

equals(Object) Returns true if two objects are the
same

before(Object) Returns true if this object is before
the given object

after(Object) Returns true if this object is after
the given object

add(byte,int) Adds the given value to the field

roll(byte,boolean)
Increments or decrements
(depending on the boolean value)
the specified field by one unit

setTimeZone(TimeZone) Sets the time zone this object is in

setValidationMode(boolean) If the boolean value is set to true,
invalid dates are allowed

getValidationMode() Returns whether or not invalid
dates are allowed

setFirstDayOfWeek(byte) Sets the first day of the week

Yogidham, kalawad road, RAJKOT 138

Atmiya Infotech

getFirstDayOfWeek() Returns the first day of the week

setMinimumDaysInFirstWeek(byte) Sets how many days are required to
define the first week of the month

getMinimumDaysInFirstWeek()
Returns how many days are
required to define the first week of
the month

getMinimum(byte) Returns the minimum possible
value for the given field

getMaximum(byte) Returns the maximum possible
value for the given field

getGreatestMinimum(byte) Returns the greatest possible
minimum value for the field

getLeastMaximum(byte) Returns the least possible
maximum value for the given field

Clone() Makes a copy of this object

Random

For the programming of games and many other program types, it is
important to be able to generate random numbers. Java includes the
capability to generate random numbers efficiently and effectively.

The Random class implements a pseudo-random number data type that
generates a stream of seemingly random numbers. To create a sequence
of different pseudo-random values each time the application is run,
create the Random object as follows:

Random r=new Random();

This statement seeds the random generator with the current time. On the
other hand, consider the following statement:

Random r=new Random(326); // Pick any value

Yogidham, kalawad road, RAJKOT 139

Atmiya Infotech

This statement seeds the random generator with the same value each
time, resulting in the same sequence of pseudo-random numbers each
time the application runs. The generator can be reseeded at any time
using the setSeed() method.

Pseudo-random numbers can be generated using one of these functions:
nextInt(), nextLong(), nextFloat(), nextDouble(), or nextGaussian(). The
first four functions return integers, longs, floats, and doubles

Table summarizes the complete interface of the Random class.

Table :: The methods available in the Random interface.
Method Description

 Constructors
Random() Creates a new random number generator
Random(long) Creates a new random number generator using a seed

 Methods
nextDouble() Returns a pseudo-random, uniformly distributed double
nextFloat() Returns a pseudo-random, uniformly distributed float
nextGaussian() Returns a pseudo-random, Gaussian distributed double
nextInt() Returns a pseudo-random, uniformly distributed integer
nextLong() Returns a pseudo-random, uniformly distributed long
setSeed(long) Sets the seed of the pseudo-random number generator

Multithreading

Basics

A thread--sometimes called an execution context or a
lightweight process--is a single sequential flow of control
within a program. Threads can be used to isolate tasks. Each

Yogidham, kalawad road, RAJKOT 140

Atmiya Infotech

thread is a sequential flow of control within the same
program.

Customizing a Thread's run Method

The run method gives a thread something to do. Its code
implements the thread's running behavior. It can do anything
that can be encoded in Java statements: compute a list of
prime's, sort some data, perform some animation.

The Thread class implements a generic thread that, by
default, does nothing. That is, the implementation of its run
method is empty. This is not particularly useful, so the
Thread class defines API that lets a Runnable object provide
a more interesting run method for a thread.

There are two techniques for providing a run method for a
thread:

Subclassing Thread and Overriding run

The first way to customize what a thread does when it is
running is to subclass Thread (itself a Runnable object) and
override its empty run method so that it does something. Let's
look at the SimpleThread class, the first of two classes in this
example, which does just that:

public class SimpleThread extends Thread {
 public SimpleThread(String str) {
 super(str);
 }
 public void run() {
 for (int i = 0; i < 10; i++) {
 System.out.println(i + " " + getName());
 try {
 sleep((long)(Math.random() * 1000));

Yogidham, kalawad road, RAJKOT 141

Atmiya Infotech

 } catch (InterruptedException e) {}
 }
 System.out.println("DONE! " + getName());
 }
}

The first method in the SimpleThread class is a constructor
that takes a String as its only argument. This constructor is
implemented by calling a superclass constructor and is
interesting to us only because it sets the Thread's name,
which is used later in the program.

method is the heart of any Thread and where the action of the
Thread takes place. The run method of the SimpleThread
class contains a for loop that iterates ten times. In each
iteration the method displays the iteration number and the
name of the Thread, then sleeps for a random interval of up
to 1 second. After the loop has finished, the run method
prints DONE! along with the name of the thread. That's it for
the SimpleThread class.

The TwoThreadsDemo class provides a main method that
creates two SimpleThread threads: one is named "Jamaica"
and the other is named "Fiji". (If you can't decide on where to
go for vacation you can use this program to help you decide--
go to the island whose thread prints "DONE!" first.)

public class TwoThreadsDemo {
 public static void main (String[] args) {
 new SimpleThread("Jamaica").start();
 new SimpleThread("Fiji").start();
 }
}

Yogidham, kalawad road, RAJKOT 142

Atmiya Infotech

The main method also starts each thread immediately
following its construction by calling the start method. To
save you from typing in this program, click here for the
source code to the SimpleThread class and here for the
source code to the TwoThreadsDemo program. Compile
and run the program and watch your vacation fate unfold.
You should see output similar to the following:

0 Jamaica
0 Fiji
1 Fiji
1 Jamaica
2 Jamaica
2 Fiji
3 Fiji
3 Jamaica
4 Jamaica
4 Fiji
5 Jamaica
5 Fiji
6 Fiji
6 Jamaica
7 Jamaica
7 Fiji
8 Fiji
9 Fiji
8 Jamaica
DONE! Fiji
9 Jamaica
DONE! Jamaica

Notice how the output from each thread is
intermingled with the output from the other. This

Yogidham, kalawad road, RAJKOT 143

http://www.buginword.com
http://www.buginword.com

Atmiya Infotech

is because both SimpleThread threads are running
concurrently. Thus, both run methods are running
at the same time and each thread is displaying its
output at the same time as the other.

Now, let's look at another example, the Clock applet, that
uses the other technique for providing a run method to a
Thread.

Implementing the Runnable Interface
The Clock applet shown below displays the current time and updates its
display every second. You can scroll this page and perform other tasks
while the clock continues to update because the code that updates the
clock's display runs within its own thread.
The Clock applet uses a different technique than SimpleThread for
providing the run method for its thread. Instead of subclassing Thread,
Clock implements the Runnable interface (and therefore implements the
run method defined in it). Clock then creates a thread and provides itself
as an argument to the Thread's constructor. When created in this way,
the Thread gets its run method from the object passed into the
constructor. The code that accomplishes this is shown in bold here:
import java.awt.Graphics;
import java.util.*;
import java.text.DateFormat;
import java.applet.Applet;

public class Clock extends Applet implements Runnable {
 private Thread clockThread = null;
 public void start() {
 if (clockThread == null) {
 clockThread = new Thread(this, "Clock");
 clockThread.start();
 }
 }
 public void run() {

Yogidham, kalawad road, RAJKOT 144

Atmiya Infotech

 Thread myThread = Thread.currentThread();
 while (clockThread == myThread) {
 repaint();
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e){
 // the VM doesn't want us to sleep anymore,
 // so get back to work
 }
 }
 }
 public void paint(Graphics g) {
 // get the time and convert it to a date
 Calendar cal = Calendar.getInstance();
 Date date = cal.getTime();
 // format it and display it
 DateFormat dateFormatter = DateFormat.getTimeInstance();
 g.drawString(dateFormatter.format(date), 5, 10);
 }
 // overrides Applet's stop method, not Thread's
 public void stop() {
 clockThread = null;
 }
}

The Clock applet's run method loops until the browser asks it to stop.
During each iteration of the loop, the clock repaints its display. The
paint method figures out what time it is, formats it in a localized way,
and displays it.

Deciding to Use the Runnable Interface

You have now seen two ways to provide the run method for a
Java thread:

Yogidham, kalawad road, RAJKOT 145

Atmiya Infotech

1. Subclass the Thread class defined in the java.lang
package and override the run method.

2. Provide a class that implements the Runnable interface
(also defined in the java.lang package) and therefore
implements the run method. In this case, a Runnable
object provides the run method to the thread.

There are good reasons for choosing either of these options
over the other. However, for most cases, including that of the
Clock applet, the following rule of thumb will guide you to
the best option.

Rule of Thumb: If your class must subclass some
other class (the most common example being Applet),
you should use Runnable as described in option #2.

To run in a Java-enabled browser, the Clock class has to be a
subclass of the Applet class. Also, the Clock applet needs a
thread so that it can continuously update its display without
taking over the process in which it is running. But since the
Java language does not support multiple class inheritance, the
Clock class cannot be a subclass of both Thread and Applet.
Thus the Clock class must use the Runnable interface to
provide its threaded behavior.

The Life Cycle of a Thread

Now that you've seen how to give a thread something to do,
we'll review some details that were glossed over in the
previous section. In particular, we look at the life cycle of a
thread: how to create and start a thread, some of the special
things it can do while it's running, and how to stop it.

The following diagram shows the states that a Java thread
can be in during its life. It also illustrates which method calls
cause a transition to another state. This figure is not a

Yogidham, kalawad road, RAJKOT 146

Atmiya Infotech

complete finite state diagram, but rather an overview of the
more interesting and common facets of a thread's life. The
remainder of this section uses the Clock applet previously
introduced to discuss a thread's life cycle in terms of its state.

Creating a Thread
The application in which an applet is running calls the applet's start
method when the user visits the applet's page. The Clock applet creates a
Thread, clockThread, in its start with the bold code shown here:
public void start() {
 if (clockThread == null) {
 clockThread = new Thread(this, "Clock");
 clockThread.start();
 }
}
After the bold statement has been executed, clockThread is in the New
Thread state. When a thread is a New Thread, it is merely an empty
Thread object; no system resources have been allocated for it yet. When
a thread is in this state, you can only start the thread. Calling any method
besides start when a thread is in this state makes no sense and causes an
IllegalThreadStateException. (In fact, the runtime system throws an
IllegalThreadStateException any time a method is called on a thread and
that thread's state does not allow for that method call.)
Notice that this--the Clock instance-- is the first argument to the thread
constructor. The first argument to this thread constructor must
implement the Runnable interface and provides the thread with its run
method. The second argument is just a name for the thread.

Yogidham, kalawad road, RAJKOT 147

Atmiya Infotech

Starting a Thread

Now consider the next line of code in Clock's start method
shown here in bold:

public void start() {
 if (clockThread == null) {
 clockThread = new Thread(this, "Clock");
 clockThread.start();
 }
}

The start method creates the system resources necessary to
run the thread, schedules the thread to run, and calls the
thread's run method. clockThread's run method is the one
defined in the Clock class.

After the start method has returned, the thread is "running".
Yet, it's somewhat more complex than that. As the previous
figure shows, a thread that has been started is actually in the
Runnable state. Many computers have a single processor,
thus making it impossible to run all "running" threads at the
same time. The Java runtime system must implement a
scheduling scheme that shares the processor between all
"running" threads. So at any given time, a "running" thread
actually may be waiting for its turn in the CPU.

Making a Thread Not Runnable
A thread becomes Not Runnable when one of these events occurs:

• Its sleep method is invoked.
• The thread calls the wait method to wait for a specific condition to

be satisifed.
• The thread is blocking on I/O.

Yogidham, kalawad road, RAJKOT 148

Atmiya Infotech

The clockThread in the Clock applet becomes Not Runnable when the
run method calls sleep on the current thread:
public void run() {
 Thread myThread = Thread.currentThread();
 while (clockThread == myThread) {
 repaint();
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e){
 // the VM doesn't want us to sleep anymore,
 // so get back to work
 }
 }
}
During the second that the clockThread is asleep, the thread does not
run, even if the processor becomes available. After the second has
elapsed, the thread becomes Runnable again and, if the processor
becomes available, the thread begins running again.

Stopping a Thread

A program doesn't stop a thread like it stops an applet (by
calling a method). Rather, a thread arranges for its own death
by having a run method that terminates naturally. For

example, the while loop in this run method is a finite loop--
it will iterate 100 times and then exit:

public void run() {
 int i = 0;
 while (i < 100) {
 i++;
 System.out.println("i = " + i);
 }
}

Yogidham, kalawad road, RAJKOT 149

Atmiya Infotech

A thread with this run method dies naturally when the loop

completes and the run method exits.

Let's look at how the Clock applet thread arranges for its own death.
You might want to use this technique with your applets. Recall Clock's
run method:
public void run() {
 Thread myThread = Thread.currentThread();
 while (clockThread == myThread) {
 repaint();
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e){
 // the VM doesn't want us to sleep anymore,
 // so get back to work
 }
 }
}
The exit condition for this run method is the exit condition for the while
loop because there is no code after the while loop:
while (clockThread == myThread) {
This condition indicates that the loop will exit when the currently
executing thread is not equal to clockThread. When would this ever be
the case?
When you leave the page, the application in which the applet is running
calls the applet's stop method. This method then sets the clockThread to
null, thereby telling the main loop in the run method to terminate:
public void stop() { // applets' stop method
 clockThread = null;
}
If you revisit the page, the start method is called again and the clock
starts up again with a new thread. Even if you stop and start the applet

Yogidham, kalawad road, RAJKOT 150

Atmiya Infotech

faster than one iteration of the loop, clockThread will be a different
thread than myThread and the loop will still terminate.

The isAlive Method

A final word about thread state: The API for the Thread

class includes a method called isAlive. The isAlive method
returns true if the thread has been started and not stopped. If
the isAlive method returns false, you know that the thread

either is a New Thread or is Dead. If the isAlive method
returns true, you know that the thread is either Runnable or
Not Runnable. You cannot differentiate between a New
Thread or a Dead thread. Nor can you differentiate between a
Runnable thread and a Not Runnable thread.

Understanding Thread Priority

Previously, this lesson claimed that threads run concurrently.
While conceptually this is true, in practice it usually isn't.
Most computer configurations have a single CPU, so threads
actually run one at a time in such a way as to provide an
illusion of concurrency. Execution of multiple threads on a
single CPU, in some order, is called scheduling. The Java
runtime supports a very simple, deterministic scheduling
algorithm known as fixed priority scheduling. This algorithm
schedules threads based on their priority relative to other
runnable threads.

When a Java thread is created, it inherits its priority from the
thread that created it. You can also modify a thread's priority
at any time after its creation using the setPriority method.
Thread priorities are integers ranging between
MIN_PRIORITY and MAX_PRIORITY (constants defined
in the Thread class). The higher the integer, the higher the

Yogidham, kalawad road, RAJKOT 151

Atmiya Infotech

priority. At any given time, when multiple threads are ready
to be executed, the runtime system chooses the runnable
thread with the highest priority for execution. Only when that
thread stops, yields, or becomes not runnable for some reason
will a lower priority thread start executing. If two threads of
the same priority are waiting for the CPU, the scheduler
chooses one of them to run in a round-robin fashion. The
chosen thread will run until one of the following conditions is
true:

• A higher priority thread becomes runnable.
• It yields, or its run method exits.
• On systems that support time-slicing, its time allotment

has expired.

Then the second thread is given a chance to run, and so on,
until the interpreter exits.

The Java runtime system's thread scheduling algorithm is
also preemptive. If at any time a thread with a higher priority
than all other runnable threads becomes runnable, the runtime
system chooses the new higher priority thread for execution.
The new higher priority thread is said to preempt the other
threads.

Rule of thumb: At any given time, the highest priority
thread is running. However, this is not guaranteed. The
thread scheduler may choose to run a lower priority
thread to avoid starvation. For this reason, use priority
only to affect scheduling policy for efficiency purposes.
Do not rely on thread priority for algorithm correctness.

Time-Slicing

Some systems, such as Windows 95/NT, fight selfish thread
behavior with a strategy known as time-slicing. Time-slicing

Yogidham, kalawad road, RAJKOT 152

Atmiya Infotech

comes into play when there are multiple "Runnable" threads
of equal priority and those threads are the highest priority
threads competing for the CPU. For example,

public void run() {
 while (tick < 400000) {
 tick++;
 if ((tick % 50000) == 0)
 System.out.println("Thread #" + num
 + ", tick = " + tick);
 }
}
This run contains a tight loop that increments the integer tick and every
50,000 ticks prints out the thread's identifier and its tick count.
When running this program on a time-sliced system, you will see
messages from both threads intermingled with one another. Like this:
Thread #1, tick = 50000
Thread #0, tick = 50000
Thread #0, tick = 100000
Thread #1, tick = 100000
Thread #1, tick = 150000
Thread #1, tick = 200000
Thread #0, tick = 150000
Thread #0, tick = 200000
Thread #1, tick = 250000
Thread #0, tick = 250000
Thread #0, tick = 300000
Thread #1, tick = 300000
Thread #1, tick = 350000
Thread #0, tick = 350000
Thread #0, tick = 400000
Thread #1, tick = 400000
This output is produced because a time-sliced system divides the CPU
into time slots and iteratively gives each of the equal-and-highest
priority threads a time slot in which to run. The time-sliced system

Yogidham, kalawad road, RAJKOT 153

Atmiya Infotech

iterates through the equal-and-highest priority threads, allowing each
one a bit of time to run, until one or more of them finishes or until a
higher priority thread preempts them. Notice that time-slicing makes no
guarantees as to how often or in what order threads are scheduled to run.
When running this program on a non-time-sliced system, however, you
will see messages from one thread finish printing before the other thread
ever gets a chance to print one message. Like this:
Thread #0, tick = 50000
Thread #0, tick = 100000
Thread #0, tick = 150000
Thread #0, tick = 200000
Thread #0, tick = 250000
Thread #0, tick = 300000
Thread #0, tick = 350000
Thread #0, tick = 400000
Thread #1, tick = 50000
Thread #1, tick = 100000
Thread #1, tick = 150000
Thread #1, tick = 200000
Thread #1, tick = 250000
Thread #1, tick = 300000
Thread #1, tick = 350000
Thread #1, tick = 400000
This is because a non-time-sliced system chooses one of the equal-and-
highest priority threads to run and allows that thread to run until it
relinquishes the CPU (by sleeping, yielding, finishing its job) or until a
higher priority preempts it.
Note: The Java runtime does not implement (and therefore does not
guarantee) time-slicing. However, some systems on which you can run
Java do support time-slicing. Your Java programs should not rely on
time-slicing as it may produce different results on different systems.

Yogidham, kalawad road, RAJKOT 154

Atmiya Infotech

Summary

• Most computers have only one CPU, so threads must share the
CPU with other threads. The execution of multiple threads on a
single CPU, in some order, is called scheduling. The Java runtime
supports a very simple, deterministic scheduling algorithm known
as fixed priority scheduling.

• Each Java thread is given a numeric priority between
MIN_PRIORITY and MAX_PRIORITY (constants defined in the

Thread class). At any given time, when multiple threads are ready
to be executed, the thread with the highest priority is chosen for
execution. Only when that thread stops, or is suspended for some
reason, will a lower priority thread start executing.

• Scheduling of the CPU is fully preemptive. If a thread with a
higher priority than the currently executing thread needs to
execute, the higher priority thread is immediately scheduled.

• The Java runtime will not preempt the currently running thread for
another thread of the same priority. In other words, the Java
runtime does not time-slice. However, the system implementation
of threads underlying the Java Thread class may support time-
slicing. Do not write code that relies on time-slicing.

• In addition, a given thread may, at any time, give up its right to
execute by calling the yield method. Threads can only yield the
CPU to other threads of the same priority--attempts to yield to a
lower priority thread are ignored.

• When all the runnable threads in the system have the same priority,
the scheduler chooses the next thread to run in a simple, non-
preemptive, round-robin scheduling order.

Synchronizing Threads

So far, this lesson has contained examples with independent,
asynchronous threads. That is, each thread contained all of
the data and methods required for its execution and didn't

Yogidham, kalawad road, RAJKOT 155

Atmiya Infotech

require any outside resources or methods. In addition, the
threads in those examples ran at their own pace without
concern over the state or activities of any other concurrently
running threads.

However, there are many interesting situations where
separate, concurrently running threads do share data and must
consider the state and activities of other threads. One such set
of programming situations are known as producer/consumer
scenarios where the producer generates a stream of data
which then is consumed by a consumer.

For example, imagine a Java application where one thread
(the producer) writes data to a file while a second thread (the
consumer) reads data from the same file. Or, as you type
characters on the keyboard, the producer thread places key
events in an event queue and the consumer thread reads the
events from the same queue. Both of these examples use
concurrent threads that share a common resource: the first
shares a file, the second shares an event queue. Because the
threads share a common resource, they must be synchronized
in some way.

The Producer/Consumer Example

The Producer generates an integer between 0 and 9
(inclusive), stores it in a CubbyHole object, and prints the
generated number. To make the synchronization problem
more interesting, the Producer sleeps for a random amount of
time between 0 and 100 milliseconds before repeating the
number generating cycle:

public class Producer extends Thread {
 private CubbyHole cubbyhole;
 private int number;

Yogidham, kalawad road, RAJKOT 156

Atmiya Infotech

 public Producer(CubbyHole c, int number) {
 cubbyhole = c;
 this.number = number;
 }

 public void run() {
 for (int i = 0; i < 10; i++) {
 cubbyhole.put(i);
 System.out.println("Producer #" +
this.number
 + " put: " + i);
 try {
 sleep((int)(Math.random() * 100));
 } catch (InterruptedException e) { }
 }
 }
}

The Consumer, being ravenous, consumes all integers from
the CubbyHole (the exact same object into which the
Producer put the integers in the first place) as quickly as they
become available.

public class Consumer extends Thread {
 private CubbyHole cubbyhole;
 private int number;

 public Consumer(CubbyHole c, int number) {
 cubbyhole = c;
 this.number = number;
 }

 public void run() {

Yogidham, kalawad road, RAJKOT 157

Atmiya Infotech

 int value = 0;
 for (int i = 0; i < 10; i++) {
 value = cubbyhole.get();
 System.out.println("Consumer #" +
this.number
 + " got: " + value);
 }
 }
}

The Producer and Consumer in this example share data
through a common CubbyHole object. And you will note that
neither the Producer nor the Consumer makes any effort
whatsoever to ensure that the Consumer is getting each value
produced once and only once. The synchronization between
these two threads actually occurs at a lower level, within the
get and put methods of the CubbyHole object. However, let's
assume for a moment that these two threads make no
arrangements for synchronization and talk about the potential
problems that might arise in that situation.

One problem arises when the Producer is quicker than the
Consumer and generates two numbers before the Consumer
has a chance to consume the first one. Thus the Consumer
would skip a number. Part of the output might look like this:

 . . .

Yogidham, kalawad road, RAJKOT 158

Atmiya Infotech

Consumer #1 got: 3
Producer #1 put: 4
Producer #1 put: 5
Consumer #1 got: 5

 . . .

Another problem that might arise is when the Consumer is
quicker than the Producer and consumes the same value
twice. In this situation, the Consumer would print the same
value twice and might produce output that looked like this:

 . . .

Producer #1 put: 4
Consumer #1 got: 4
Consumer #1 got: 4
Producer #1 put: 5

 . . .

Either way, the result is wrong. You want the Consumer to
get each integer produced by the Producer exactly once.
Problems such as those just described are called race
conditions. They arise from multiple, asynchronously
executing threads trying to access a single object at the same
time and getting the wrong result.

Race conditions in the producer/consumer example are
prevented by having the storage of a new integer into the

Yogidham, kalawad road, RAJKOT 159

Atmiya Infotech

CubbyHole by the Producer be synchronized with the
retrieval of an integer from the CubbyHole by the Consumer.
The Consumer must consume each integer exactly once.

The activities of the Producer and Consumer must be
synchronized in two ways. First, the two threads must not
simultaneously access the CubbyHole. A Java thread can
prevent this from happening by locking an object. When an
object is locked by one thread and another thread tries to call
a synchronized method on the same object, the second thread
will block until the object is unlocked.

And second, the two threads must do some simple
coordination. That is, the Producer must have some way to
indicate to the Consumer that the value is ready and the
Consumer must have some way to indicate that the value has
been retrieved. The Thread class provides a collection of
methods--wait, notify, and notifyAll--to help threads wait for
a condition and notify other threads of when that condition
changes.

The Main Program

Here's a small stand-alone Java application that creates a
CubbyHole object, a Producer, a Consumer, and then starts
both the Producer and the Consumer.

public class ProducerConsumerTest {
 public static void main(String[] args) {
 CubbyHole c = new CubbyHole();
 Producer p1 = new Producer(c, 1);
 Consumer c1 = new Consumer(c, 1);

 p1.start();
 c1.start();
 }

Yogidham, kalawad road, RAJKOT 160

Atmiya Infotech

}

The Output

Here's the output of ProducerConsumerTest.

Producer #1 put: 0
Consumer #1 got: 0
Producer #1 put: 1
Consumer #1 got: 1
Producer #1 put: 2
Consumer #1 got: 2
Producer #1 put: 3
Consumer #1 got: 3
Producer #1 put: 4
Consumer #1 got: 4
Producer #1 put: 5
Consumer #1 got: 5
Producer #1 put: 6
Consumer #1 got: 6
Producer #1 put: 7
Consumer #1 got: 7
Producer #1 put: 8
Consumer #1 got: 8
Producer #1 put: 9
Consumer #1 got: 9

Locking an Object
The code segments within a program that access the same object from
separate, concurrent threads are called critical sections. In the Java
language, a critical section can be a block or a method and are identified
with the synchronized keyword. The Java platform then associates a lock
with every object that has synchronized code.
In the producer/consumer example, the put and get methods of the
CubbyHole are the critical sections. The Consumer should not access the
CubbyHole when the Producer is changing it, and the Producer should

Yogidham, kalawad road, RAJKOT 161

Atmiya Infotech

not modify it when the Consumer is getting the value. So put and get in
the CubbyHole class should be marked with the synchronized keyword.
Here's a code skeleton for the CubbyHole class:
public class CubbyHole {
 private int contents;
 private boolean available = false;

 public synchronized int get() {
 ...
 }

 public synchronized void put(int value) {
 ...
 }
}
Note that the method declarations for both put and get contain the
synchronized keyword. Hence, the system associates a unique lock with
every instance of CubbyHole (including the one shared by the Producer
and the Consumer). Whenever control enters a synchronized method, the
thread that called the method locks the object whose method has been
called. Other threads cannot call a synchronized method on the same
object until the object is unlocked.
So, when the Producer calls CubbyHole's put method, it locks the
CubbyHole, thereby preventing the Consumer from calling the
CubbyHole's get method:
public synchronized void put(int value) {
 // CubbyHole locked by the Producer
 ..
 // CubbyHole unlocked by the Producer
}
When the put method returns, the Producer unlocks the CubbyHole.
Similarly, when the Consumer calls CubbyHole's get method, it locks
the CubbyHole, thereby preventing the Producer from calling put:
public synchronized int get() {
 // CubbyHole locked by the Consumer

Yogidham, kalawad road, RAJKOT 162

Atmiya Infotech

 ...
 // CubbyHole unlocked by the Consumer
}
The acquisition and release of a lock is done automatically and
atomically by the Java runtime system. This ensures that race conditions
cannot occur in the underlying implementation of the threads, thus
ensuring data integrity. Synchronization isn't the whole story. The two
threads must also be able to notify one another when they've done their
job. Learn more about that after a brief foray into reentrant locks.

Reaquiring a Lock
The Java runtime system allows a thread to re-acquire a lock that it
already holds because Java locks are reentrant. Reentrant locks are
important because they eliminate the possibility of a single thread
deadlocking itself on a lock that it already holds.
Consider this class:
public class Reentrant {
 public synchronized void a() {
 b();
 System.out.println("here I am, in a()");
 }
 public synchronized void b() {
 System.out.println("here I am, in b()");
 }
}
Reentrant contains two synchronized methods: a and b. The first
synchronized method, a, calls the other synchronized method, b.
When control enters method a, the current thread acquires the lock for
the Reentrant object. Now, a calls b and because b is also synchronized
the thread attempts to acquire the same lock again. Because Java
supports reentrant locks, this works. The current thread can acquire the
Reentrant object's lock again and both a and b execute to conclusion as
is evidenced by the output:
here I am, in b()
here I am, in a()

Yogidham, kalawad road, RAJKOT 163

Atmiya Infotech

In systems that don't support reentrant locks, this sequence of method
calls would cause deadlock.

Using the notifyAll and wait Methods

The CubbyHole stores its value in a private member variable
called contents. CubbyHole has another private member
variable, available, that is a boolean. available is true when
the value has just been put but not yet gotten and is false
when the value has been gotten but not yet put. So, here's one
possible implementation for the put and get methods:

public synchronized int get() { // won't work!
 if (available == true) {
 available = false;
 return contents;
 }
}
public synchronized void put(int value) { //
won't work!
 if (available == false) {
 available = true;
 contents = value;
 }
}

As implemented, these two methods won't work. Look at the
get method. What happens if the Producer hasn't put anything
in the CubbyHole and available isn't true? get does nothing.
Similarly, if the Producer calls put before the Consumer got
the value, put doesn't do anything.

Yogidham, kalawad road, RAJKOT 164

Atmiya Infotech

You really want the Consumer to wait until the Producer puts
something in the CubbyHole and the Producer must notify
the Consumer when it's done so. Similarly, the Producer must
wait until the Consumer takes a value (and notifies the
Producer of its activities) before replacing it with a new
value. The two threads must coordinate more fully and can
use Object's wait and notifyAll methods to do so.

Here are the new implementations of get and put that wait on
and notify each other of their activities:

public synchronized int get() {
 while (available == false) {
 try {
 // wait for Producer to put value
 wait();
 } catch (InterruptedException e) {
 }
 }
 available = false;
 // notify Producer that value has been retrieved
 notifyAll();
 return contents;
}
public synchronized void put(int value) {
 while (available == true) {
 try {
 // wait for Consumer to get value
 wait();
 } catch (InterruptedException e) {
 }
 }
 contents = value;
 available = true;
 // notify Consumer that value has been set

Yogidham, kalawad road, RAJKOT 165

Atmiya Infotech

 notifyAll();
}

The code in the get method loops until the Producer has
produced a new value. Each time through the loop, get calls
the wait method. The wait method relinquishes the lock held
by the Consumer on the CubbyHole (thereby allowing the
Producer to get the lock and update the CubbyHole) and then
waits for notification from the Producer. When the Producer
puts something in the CubbyHole, it notifies the Consumer
by calling notifyAll. The Consumer then comes out of the
wait state, available is now true, the loop exits, and the get
method returns the value in the CubbyHole.

The put method works in a similar fashion, waiting for the
Consumer thread to consume the current value before
allowing the Producer to produce a new one.

The notifyAll method wakes up all threads waiting on the
object in question (in this case, the CubbyHole). The
awakened threads compete for the lock. One thread gets it,
and the others go back to waiting. The Object class also
defines the notify method, which arbitrarily wakes up one of
the threads waiting on this object.

The Object class contains not only the version of wait that is
used in the producer/consumer example and which waits
indefinitely for notification, but also two other versions of the
wait method:

Yogidham, kalawad road, RAJKOT 166

Atmiya Infotech

wait(long timeout)
Waits for notification or until the timeout period has elapsed.
timeout is measured in milliseconds.
wait(long timeout, int nanos)
Waits for notification or until timeout milliseconds plus
nanos nanoseconds have elapsed.

Note: Besides using these timed wait methods to
synchronize threads, you also can use them in place of
sleep. Both wait and sleep delay for the requested
amount of time, but you can easily wake up wait with a
notify but a sleeping thread cannot be awakened
prematurely. This doesn't matter too much for threads
that don't sleep for long, but it could be important for
threads that sleep for minutes at a time.

Avoiding Starvation and Deadlock

The dining philosophers are often used to illustrate various
problems that can occur when many synchronized threads are
competing for limited resources.

The story goes like this: Five philosophers are sitting at a
round table. In front of each philosopher is a bowl of rice.
Between each pair of philosophers is one chopstick. Before
an individual philosopher can take a bite of rice he must have
two chopsticks--one taken from the left, and one taken from
the right. The philosophers must find some way to share
chopsticks such that they all get to eat.

For most Java programmers, the best choice is to prevent
deadlock rather than to try and detect it. Deadlock detection
is complicated and beyond the scope of this tutorial. The
simplest approach to preventing deadlock is to impose
ordering on the condition variables. In the dining philosopher
example, there is no ordering imposed on the condition

Yogidham, kalawad road, RAJKOT 167

Atmiya Infotech

variables because the philosophers and the chopsticks are
arranged in a circle.

 However, we can change the rules in the applet by
numbering the chopsticks 1 through 5 and insisting that the
philosophers pick up the chopstick with the lower number
first. The philosopher who is sitting between chopsticks 1
and 2 and the philosopher who is sitting between chopsticks
1 and 5 must now reach for the same chopstick first
(chopstick 1) rather than picking up the one on the right.
Whoever gets chopstick 1 first is now free to take another
one. Whoever doesn't get chopstick 1 must now wait for the
first philosopher to release it. Deadlock is not possible.

Grouping Threads

Every Java thread is a member of a thread group. Thread
groups provide a mechanism for collecting multiple threads
into a single object and manipulating those threads all at
once, rather than individually. For example, you can start or
suspend all the threads within a group with a single method
call. Java thread groups are implemented by the
ThreadGroup class in the java.lang package.

The runtime system puts a thread into a thread group during
thread construction. When you create a thread, you can either
allow the runtime system to put the new thread in some
reasonable default group or you can explicitly set the new
thread's group. The thread is a permanent member of
whatever thread group it joins upon its creation--you cannot
move a thread to a new group after the thread has been
created.

Yogidham, kalawad road, RAJKOT 168

Atmiya Infotech

The Default Thread Group

If you create a new Thread without specifying its group in the
constructor, the runtime system automatically places the new
thread in the same group as the thread that created it (known
as the current thread group and the current thread,
respectively). So, if you leave the thread group unspecified
when you create your thread, what group contains your
thread?

When a Java application first starts up, the Java runtime
system creates a ThreadGroup named main. Unless specified
otherwise, all new threads that you create become members
of the main thread group.

Note: If you create a thread within an applet, the new
thread's group may be something other than main,
depending on the browser or viewer that the applet is
running in.

Creating a Thread Explicitly in a Group
As mentioned previously, a thread is a permanent member of whatever
thread group it joins when its created--you cannot move a thread to a
new group after the thread has been created. Thus, if you wish to put
your new thread in a thread group other than the default, you must
specify the thread group explicitly when you create the thread. The
Thread class has three constructors that let you set a new thread's group:
public Thread(ThreadGroup group, Runnable runnable)
public Thread(ThreadGroup group, String name)
public Thread(ThreadGroup group, Runnable runnable, String name)
Each of these constructors creates a new thread, initializes it based on
the Runnable and String parameters, and makes the new thread a
member of the specified group. For example, the following code sample
creates a thread group (myThreadGroup) and then creates a thread
(myThread) in that group.
ThreadGroup myThreadGroup = new ThreadGroup(

Yogidham, kalawad road, RAJKOT 169

Atmiya Infotech

 "My Group of Threads");
Thread myThread = new Thread(myThreadGroup,
 "a thread for my group");
Getting a Thread's Group
To find out what group a thread is in, you can call its getThreadGroup
method:
theGroup = myThread.getThreadGroup();

The ThreadGroup Class

Once you've obtained a thread's ThreadGroup, you can
query the group for information, such as what other threads
are in the group. You can also modify the threads in that
group, such as suspending, resuming, or stopping them, with
a single method invocation.

Collection Management Methods

The ThreadGroup provides a set of methods that manage the
threads and subgroups within the group and allow other
objects to query the ThreadGroup for information about its
contents. For example, you can call ThreadGroup's
activeCount method to find out the number of active threads
currently in the group. The activeCount method is often used
with the enumerate method to get an array filled with
references to all the active threads in a ThreadGroup. For
example, the listCurrentThreads method in the following
example fills an array with all of the active threads in the
current thread group and prints their names:

public class EnumerateTest {
 public void listCurrentThreads() {
 ThreadGroup currentGroup =

Thread.currentThread().getThreadGroup();

Yogidham, kalawad road, RAJKOT 170

Atmiya Infotech

 int numThreads =
currentGroup.activeCount();
 Thread[] listOfThreads = new
Thread[numThreads];

 currentGroup.enumerate(listOfThreads);
 for (int i = 0; i < numThreads; i++)
 System.out.println("Thread #" + i + " = " +

 listOfThreads[i].getName());
 }
}

Other collection management methods provided by the
ThreadGroup class include activeGroupCount and list.

Methods that Operate on the Group

The ThreadGroup class supports several attributes that are
set and retrieved from the group as a whole. These attributes
include the maximum priority that any thread within the
group can have, whether the group is a "daemon" group, the
name of the group, and the parent of the group.

The methods that get and set ThreadGroup attributes operate
at the group level. They inspect or change the attribute on the
ThreadGroup object, but do not affect any of the threads
within the group. The following is a list of ThreadGroup
methods that operate at the group level:

• getMaxPriority and setMaxPriority
• getDaemon and setDaemon
• getName
• getParent and parentOf
• toString

Yogidham, kalawad road, RAJKOT 171

Atmiya Infotech

For example, when you use setMaxPriority to change a
group's maximum priority, you are only changing the
attribute on the group object; you are not changing the
priority of any of the threads within the group. Consider the
following program that creates a group and a thread within
that group:

public class MaxPriorityTest {
 public static void main(String[] args) {

 ThreadGroup groupNORM = new
ThreadGroup(
 "A group with normal
priority");
 Thread priorityMAX = new
Thread(groupNORM,
 "A thread with maximum
priority");

 // set Thread's priority to max (10)

priorityMAX.setPriority(Thread.MAX_PRIORIT
Y);

 // set ThreadGroup's max priority to normal
(5)

groupNORM.setMaxPriority(Thread.NORM_PRI
ORITY);

 System.out.println("Group's maximum
priority = " +

groupNORM.getMaxPriority());
 System.out.println("Thread's priority = " +

Yogidham, kalawad road, RAJKOT 172

Atmiya Infotech

 priorityMAX.getPriority());
 }
}

When the ThreadGroup groupNORM is created, it inherits its
maximum priority attribute from its parent thread group. In
this case, the parent group priority is the maximum
(MAX_PRIORITY) allowed by the Java runtime system.
Next the program sets the priority of the priorityMAX thread
to the maximum allowed by the Java runtime system. Then
the program lowers the group's maximum to the normal
priority (NORM_PRIORITY). The setMaxPriority method
does not affect the priority of the priorityMAX thread, so that
at this point, the priorityMAX thread has a priority of 10,
which is greater than the maximum priority of its group,
groupNORM. This is the output from the program:

Group's maximum priority = 5
Thread's priority = 10

As you can see a thread can have a higher priority than the
maximum allowed by its group as long as the thread's priority
is set before the group's maximum priority is lowered. A
thread group's maximum priority is used to limit a thread's

Yogidham, kalawad road, RAJKOT 173

Atmiya Infotech

priority when the thread is first created within a group or
when you use setPriority to change the thread's priority. Note
that setMaxPriority does change the maximum priority of all
of its descendant-threadgroups.

Similarly, a group's daemon status applies only to the group.
Changing a group's daemon status does not affect the daemon
status of any of the threads in the group. Furthermore, a
group's daemon status does not in any way imply the daemon
status of its threads--you can put any thread within a daemon
thread group. The daemon status of a thread group simply
indicates that the group will be destroyed when all of its
threads have been terminated.

Methods that Operate on All Threads within a Group

The ThreadGroup class has three methods that allow you to
modify the current state of all the threads within that group:

• resume

• stop

• suspend

These methods apply the appropriate state change to every
thread in the thread group and its subgroups.

Access Restriction Methods

The ThreadGroup class itself does not impose any access
restrictions, such as allowing threads from one group to
inspect or modify threads in a different group. Rather the
Thread and ThreadGroup classes cooperate with security

managers (subclasses of the SecurityManager class), which

Yogidham, kalawad road, RAJKOT 174

Atmiya Infotech

can impose access restrictions based on thread group
membership.

The Thread and ThreadGroup class both have a method,
checkAccess, which calls the current security manager's
checkAccess method. The security manager decides whether
to allow the access based on the group membership of the
threads involved. If access is not allowed, the checkAccess
method throws a SecurityException. Otherwise, checkAccess
simply returns.

The following is a list of ThreadGroup methods that call
ThreadGroup's checkAccess before performing the action of
the method. These are what are known as regulated accesses,
that is, accesses that must be approved by the security
manager before they can be completed.

• ThreadGroup(ThreadGroup parent, String name)
• setDaemon(boolean isDaemon)
• setMaxPriority(int maxPriority)
• stop
• suspend
• resume
• destroy

This is a list of the methods in the Thread class that call
checkAccess before proceeding:

• constructors that specify a thread group
• stop
• suspend
• resume
• setPriority(int priority)
• setName(String name)
• setDaemon(boolean isDaemon)

Yogidham, kalawad road, RAJKOT 175

Atmiya Infotech

A stand-alone Java application does not have a security
manager by default; no restrictions are imposed and any
thread can inspect or modify any other thread, regardless of
the group they are in. You can define and implement your
own access restrictions for thread groups by subclassing
SecurityManager

The HotJava Web browser is an example of an application
that implements its own security manager. HotJava needs to
ensure that applets are well-behaved and don't do nasty
things to other applets running at the same time (such as
lowering the priority of another applet's threads). HotJava's
security manager does not allow threads in different groups
to modify one another. Please note that access restrictions
based on thread groups may vary from browser to browser
and thus applets may behave differently in different
browsers.

Summary

This lesson has provided a great deal of information about
using threads in the Java development environment. Threads
are supported by various components of the Java
development environment, and it can be hard to find the
features that you need. This section summarizes where in the
Java environment you can find various classes, methods, and
language features that participate in the Java

Yogidham, kalawad road, RAJKOT 176

Atmiya Infotech

IO

Often a program needs to bring in information from an external source
or to send out information to an external destination. The information
can be anywhere: in a file, on disk, somewhere on the network, in
memory, or in another program. Also, the information can be of any
type: objects, characters, images, or sounds. This chapter covers the
Java™ platform classes that your programs can use to read and to write
data.

Basics
To bring in information, a program opens a stream on an information
source (a file, memory, a socket) and reads the information sequentially,
as shown here:

Similarly, a program can send information to an external destination by
opening a stream to a destination and writing the information out
sequentially, like this:

No matter where the data is coming from or going to and no matter what
its type, the algorithms for sequentially reading and writing data are
basically the same:

Reading Writing

open a stream
while more information

open a stream
while more information

Yogidham, kalawad road, RAJKOT 177

Atmiya Infotech

 read information
close the stream

 write information
close the stream

The java.io package contains a collection of stream classes that support
these algorithms for reading and writing. To use these classes, a program
needs to import the java.io package. The stream classes are divided into
two class hierarchies, based on the data type (either characters or bytes)
on which they operate.

Character Streams

Reader and Writer are the abstract superclasses for character streams in

java.io. Reader provides the API and implementation for readers-

streams that read 16-bit characters and Writer provides the API and
implementation for writers-streams that write 16-bit characters.
Subclasses of Reader and Writer implement specialized streams and are
divided into two categories:

• those that read from or write to data sinks (shown in gray in the
following figures)

• those that perform some sort of processing (shown in white).
The figure shows the class hierarchies for the Reader and Writer
classes.

Yogidham, kalawad road, RAJKOT 178

Atmiya Infotech

Most programs should use readers and writers to read and write textual
information. The reason is that they can handle any character in the
Unicode character set, whereas the byte streams are limited to 8-bit
bytes.

Byte Streams
To read and write 8-bit bytes, programs should use the byte streams,
descendants of InputStream and OutputStream. InputStream and

OutputStream provide the API and implementation for input streams
(streams that read 8-bit bytes) and output streams (streams that write 8-
bit bytes). These streams are typically used to read and write binary data
such as images and sounds. Two of the byte stream classes,
ObjectInputStream and ObjectOutputStream, are used for object
serialization.

As with Reader and Writer, subclasses of InputStream and

OutputStream provide specialized I/O that falls into two categories, as
shown in the following class hierarchy figure:

• data sink streams (shaded)
• processing streams (unshaded).

Yogidham, kalawad road, RAJKOT 179

Atmiya Infotech

Understanding the I/O Superclasses

Reader and InputStream define similar APIs but for different data

types. For example, Reader contains these methods for reading
characters and arrays of characters:

• int read()
• int read(char cbuf[])
• int read(char cbuf[], int offset, int length)

InputStream defines the same methods but for reading bytes and arrays
of bytes:

• int read()
• int read(byte cbuf[])
• int read(byte cbuf[], int offset, int length)

Also, both Reader and InputStream provide methods for marking a
location in the stream, skipping input, and resetting the current position.

Yogidham, kalawad road, RAJKOT 180

Atmiya Infotech

Writer and OutputStream are similarly parallel. Writer defines these
methods for writing characters and arrays of characters:

• int write(int c)
• int write(char cbuf[])
• int write(char cbuf[], int offset, int length)

And OutputStream defines the same methods but for bytes:
• int write(int c)
• int write(byte cbuf[])
• int write(byte cbuf[], int offset, int length)

All of the streams-readers, writers, input streams, and output streams-are
automatically opened when created. You can close any stream explicitly
by calling its close method. Or the garbage collector can implicitly
close it, which occurs when the object is no longer referenced.

Using the Streams

The following table lists java.io's streams and describes what they do.

Note that many times, java.io contains character streams and byte
streams that perform the same type of I/O but for different data types.

I/O Streams
Type of I/O Streams Description

Memory

CharArrayReader

CharArrayWriter

ByteArrayInputStream

ByteArrayOutputStream

Use these streams to read
from and write to
memory. You create these
streams on an existing
array and then use the
read and write methods to
read from or write to the
array.

Yogidham, kalawad road, RAJKOT 181

Atmiya Infotech

StringReader

StringWriter

StringBufferInputStream

Use StringReader to
read characters from a
String in memory. Use

StringWriter to write to a

String. StringWriter
collects the characters
written to it in a
StringBuffer, which can
then be converted to a
String.

StringBufferInputStream
is similar to
StringReader, except
that it reads bytes from a
StringBuffer.

Pipe

PipedReader

PipedWriter

PipedInputStream

PipedOutputStream

Implement the input and
output components of a
pipe. Pipes are used to
channel the output from
one thread into the input
of another.

File

FileReader

FileWriter

FileInputStream

FileOutputStream

Collectively called file
streams, these streams are
used to read from or write
to a file on the native file
system.

Concatenation
N/A
SequenceInputStream

Concatenates multiple
input streams into one

Yogidham, kalawad road, RAJKOT 182

Atmiya Infotech

input stream.

Object
Serialization

N/A
ObjectInputStream

ObjectOutputStream
Used to serialize objects.

Data
Conversion

N/A

DataInputStream

DataOutputStream

Read or write primitive
data types in a machine-
independent format.

Counting
LineNumberReader

LineNumberInputStream
Keeps track of line
numbers while reading.

Peeking
Ahead

PushbackReader

PushbackInputStream

These input streams each
have a pushback buffer.

Printing
PrintWriter

PrintStream

Contain convenient
printing methods. These
are the easiest streams to
write to, so you will often
see other writable streams
wrapped in one of these.

Buffering

BufferedReader

BufferedWriter

BufferedInputStream

BufferedOutputStream

Buffer data while reading
or writing, thereby
reducing the number of
accesses required on the
original data source.
Buffered streams are
typically more efficient
than similar nonbuffered
streams and are often used
with other streams.

Yogidham, kalawad road, RAJKOT 183

Atmiya Infotech

Filtering

FilterReader

FilterWriter

FilterInputStream

FilterOutputStream

These abstract classes
define the interface for
filter streams, which filter
data, as it's being read or
written.

Converting
between
Bytes and
Characters

InputStreamReader

OutputStreamWriter

A reader and writer pair
that forms the bridge
between byte streams and
character streams.
An InputStreamReader
reads bytes from an
InputStream and
converts them to
characters.
An OutputStreamWriter
converts characters to
bytes and then writes
those bytes to an
OutputStream.

Understanding the Implementation of various IO classes

FileInputStream, FileOutputStream, FileReader, FileWriter

File streams are perhaps the easiest streams to understand. The file
streams-- FileReader, FileWriter, FileInputStream, and

Yogidham, kalawad road, RAJKOT 184

Atmiya Infotech

FileOutputStream--each read or write from a file on the native file
system.

A FileInputStream obtains input bytes from a file in a file system.
What files are available depends on the host environment.

A FileOutputStream is an output stream for writing data to a File.
Whether or not a file is available or may be created depends upon the
underlying platform. Some platforms, in particular, allow a file to be
opened for writing by only one FileOutputStream at a time

FileReader is a convenience class for reading character files. The
constructors of this class assume that the default character encoding and
the default byte-buffer size are appropriate.

FileWriter is a convenience class for writing character files. The
constructors of this class assume that the default character encoding and
the default byte-buffer size are acceptable. To specify these values
yourself, construct an OutputStreamWriter on a FileOutputStream.

import java.io.*;
public class Copy {
 public static void main(String[] args) throws IOException {
 File inputFile = new File("in.txt");
 File outputFile = new File("out.txt");

 FileReader in = new FileReader(inputFile);
 FileWriter out = new FileWriter(outputFile);
 int c;

 while ((c = in.read()) != -1)
 out.write(c);

 in.close();

Yogidham, kalawad road, RAJKOT 185

Atmiya Infotech

 out.close();
 }
}
/*streams….*/
import java.io.*;

public class CopyBytes {
 public static void main(String[] args) throws IOException {
 File inputFile = new File("farrago.txt");
 File outputFile = new File("outagain.txt");

 FileInputStream in = new FileInputStream(inputFile);
 FileOutputStream out = new FileOutputStream(outputFile);
 int c;

 while ((c = in.read()) != -1)
 out.write(c);

 in.close();
 out.close();
 }
}

This program is very simple. It opens a FileReader on in.txt and opens

a FileWriter on out.txt. The program reads characters from the reader as
long as there's more input in the input file and writes those characters to
the writer. When the input runs out, the program closes both the reader
and the writer.

Yogidham, kalawad road, RAJKOT 186

Atmiya Infotech

ByteArrayInputStream, ByteArrayOutputStream

A ByteArrayInputStream contains an internal buffer that contains
bytes that may be read from the stream. An internal counter keeps track
of the next byte to be supplied by the read method.

A ByteArrayOutputStream class implements an output stream in
which the data is written into a byte array. The buffer automatically
grows as data is written to it. The data can be retrieved using
toByteArray() and toString().

import java.io.*

public class ByteArrayIOApp {
 public static void main(String args[])
throws IOException {
 ByteArrayOutputStream outStream = new
ByteArrayOutputStream();
 String s = "This is a test.";
 for(int i=0;i<s.length();++i)
 outStream.write(s.charAt(i));
 System.out.println("outstream:
"+outStream);
 System.out.println("size:
"+outStream.size());
 ByteArrayInputStream inStream;
 inStream = new
ByteArrayInputStream(outStream.toByteArra
y());
 int inBytes = inStream.available();
 System.out.println("inStream has
"+inBytes+" available bytes");
 byte inBuf[] = new byte[inBytes];
 int bytesRead =

Yogidham, kalawad road, RAJKOT 187

Atmiya Infotech

inStream.read(inBuf,0,inBytes);
 System.out.println(bytesRead+" bytes
were read");
 System.out.println("They are: "+new
String(inBuf,0));
 }
}

InputStreamReader, OutputStreamWriter

An InputStreamReader is a bridge from byte streams to character
streams: It reads bytes and translates them into characters
according to a specified character encoding. The encoding that it
uses may be specified by name, or the platform's default
encoding may be accepted.

An OutputStreamWriter is a bridge from character streams to byte
streams: Characters written to it are translated into bytes
according to a specified character encoding. The encoding that it
uses may be specified by name, or the platform's default
encoding may be accepted.

import java.io.*;
class WriteStuff {
 public static void main (String args[]) {
 // Copy the string into a byte array
 String s = new String("Dance, spider!\n");
 char[] buf = new char[64];
 s.getChars(0, s.length(), buf, 0);
 // Output the byte array (buffered)
 Writer out = new BufferedWriter(new
OutputStreamWriter(System.out));
 try {
 out.write(buf, 0, 64);
 out.flush();
 }

Yogidham, kalawad road, RAJKOT 188

Atmiya Infotech

 catch (Exception e) {
 System.out.println("Error: " + e.toString());
 }
 }
}

import java.io.*;
class ReadKeys4 {
 public static void main (String args[]) {
 Reader in = new BufferedReader(new
InputStreamReader(System.in));
 char buf[] = new char[10];
 try {
 in.read(buf, 0, 10);
 }
 catch (Exception e) {
 System.out.println("Error: " + e.toString());
 }
 String s = new String(buf);
 System.out.println(s);
 }
}

BufferedInputStream, BufferedOutputStream, BufferedReader,
BufferedWriter

A BufferedInputStream adds functionality to another input stream-

namely, the ability to buffer the input and to support the mark and reset

methods. When the BufferedInputStream is created, an internal buffer
array is created. As bytes from the stream are read or skipped, the
internal buffer is refilled as necessary from the contained input stream,
many bytes at a time. The mark operation remembers a point in the

input stream and the reset operation causes all the bytes read since the

Yogidham, kalawad road, RAJKOT 189

Atmiya Infotech

most recent mark operation to be reread before new bytes are taken
from the contained input stream.

A BufferedOutputStream class implements a buffered output
stream. By setting up such an output stream, an application can
write bytes to the underlying output stream without necessarily
causing a call to the underlying system for each byte written. The
data is written into an internal buffer, and then written to the
underlying stream if the buffer reaches its capacity, the buffer
output stream is closed, or the buffer output stream is explicitly
flushed.

A BufferedReader reads text from a character-input stream,
buffering characters so as to provide for the efficient reading of
characters, arrays, and lines.
The buffer size may be specified, or the default size may be used.
The default is large enough for most purposes

A BufferedWriter writes text to a character-output stream,
buffering characters so as to provide for the efficient writing of
single characters, arrays, and strings.
The buffer size may be specified, or the default size may be
accepted. The default is large enough for most purposes.

import java.io.*;

public class BufferedIOApp {
 public static void main(String args[]) throws IOException {
 SequenceInputStream f3;
 FileInputStream f1 = new
FileInputStream("ByteArrayIOApp.java");
 FileInputStream f2 = new FileInputStream("FileIOApp.java");
 f3 = new SequenceInputStream(f1,f2);
 BufferedInputStream inStream = new BufferedInputStream(f3);

Yogidham, kalawad road, RAJKOT 190

Atmiya Infotech

 BufferedOutputStream bufStream = new
BufferedOutputStream(System.out);
 PrintStream outStream = new PrintStream(bufStream);
// inStream.skip(500);
 boolean eof = false;
 int byteCount = 0;
 while (!eof) {
 int c = inStream.read();
 if(c == -1) eof = true;
 else{
 outStream.print((char) c);
 ++byteCount;
 }
 }
 outStream.println(byteCount+" bytes were read");
 inStream.close();
 outStream.close();
 f1.close();
 f2.close();
 }
}

DataInputStream, DataOutputStream

A DataInputStream lets an application read primitive Java data types
from an underlying input stream in a machine-independent way. An
application uses a data output stream to write data that can later be read
by a data input stream.

A DataOutputStream lets an application write primitive Java data types
to an output stream in a portable way. An application can then use a data
input stream to read the data back in.

import java.io.*;

Yogidham, kalawad road, RAJKOT 191

Atmiya Infotech

class DataInputStreamDemo {

 public static void main(String args[]) {

 try {

 // Create a file input stream
 FileInputStream fis =
 new FileInputStream(args[0]);

 // Create a data input stream
 DataInputStream dis =
 new DataInputStream(fis);

 // Read and display data
 System.out.println(dis.readBoolean());
 System.out.println(dis.readByte());
 System.out.println(dis.readChar());
 System.out.println(dis.readDouble());
 System.out.println(dis.readFloat());
 System.out.println(dis.readInt());
 System.out.println(dis.readLong());
 System.out.println(dis.readShort());

 // Close file input stream
 fis.close();
 }
 catch(Exception e) {
 System.out.println("Exception: " + e);
 }
 }
}

import java.io.*;

Yogidham, kalawad road, RAJKOT 192

Atmiya Infotech

class DataOutputStreamDemo {

 public static void main(String args[]) {

 try {

 // Create a file output stream
 FileOutputStream fos =
 new FileOutputStream(args[0]);

 // Create a data output stream
 DataOutputStream dos =
 new DataOutputStream(fos);

 // Write various types of data
 dos.writeBoolean(false);
 dos.writeByte(Byte.MAX_VALUE);
 dos.writeChar('A');
 dos.writeDouble(Double.MAX_VALUE);
 dos.writeFloat(Float.MAX_VALUE);
 dos.writeInt(Integer.MAX_VALUE);
 dos.writeLong(Long.MAX_VALUE);
 dos.writeShort(Short.MAX_VALUE);

 // Close file output stream
 fos.close();
 }
 catch(Exception e) {
 System.out.println("Exception: " + e);
 }
 }
}

Yogidham, kalawad road, RAJKOT 193

Atmiya Infotech

SequenceInputStream

A SequenceInputStream represents the logical concatenation of
other input streams. It starts out with an ordered collection of input
streams and reads from the first one until end of file is reached,
whereupon it reads from the second one, and so on, until end of
file is reached on the last of the contained input streams.

//Listing 13.3. The source code of the SequenceIOApp program.
import java.io.*;

public class SequenceIOApp {
 public static void main(String args[]) throws IOException {
 SequenceInputStream inStream;
 FileInputStream f1 = new
FileInputStream("ByteArrayIOApp.java");
 FileInputStream f2 = new FileInputStream("FileIOApp.java");
 inStream = new SequenceInputStream(f1,f2);
 boolean eof = false;
 int byteCount = 0;
 while (!eof) {
 int c = inStream.read();
 if(c == -1) eof = true;
 else{
 System.out.print((char) c);
 ++byteCount;
 }
 }
 System.out.println(byteCount+" bytes were read");
 inStream.close();
 f1.close();
 f2.close();
 }
}

Yogidham, kalawad road, RAJKOT 194

Atmiya Infotech

CharArrayReader, CharArrayWriter

CharArrayReader class implements a character buffer that can be used
as a character-input stream.

CharArrayWriter class implements a character buffer that can be used as
an Writer. The buffer automatically grows when data is written to the
stream. The data can be retrieved using toCharArray() and toString().

// Demonstrate CharArrayWriter.
import java.io.*;

class CharArrayWriterDemo {
 public static void main(String args[]) throws IOException {
 CharArrayWriter f = new CharArrayWriter();
 String s = "This should end up in the array";
 char buf[] = new char[s.length()];

 s.getChars(0, s.length(), buf, 0);
 f.write(buf);
 System.out.println("Buffer as a string");
 System.out.println(f.toString());
 System.out.println("Into array");

 char c[] = f.toCharArray();
 for (int i=0; i<c.length; i++) {
 System.out.print(c[i]);
 }

 System.out.println("\nTo a FileWriter()");
 FileWriter f2 = new FileWriter("test.txt");
 f.writeTo(f2);
 f2.close();
 System.out.println("Doing a reset");
 f.reset();

Yogidham, kalawad road, RAJKOT 195

Atmiya Infotech

 for (int i=0; i<3; i++)
 f.write('X');
 System.out.println(f.toString());
 }
}

// Demonstrate CharArrayReader.
import java.io.*;

public class CharArrayReaderDemo {
 public static void main(String args[]) throws IOException {
 String tmp = "abcdefghijklmnopqrstuvwxyz";
 int length = tmp.length();
 char c[] = new char[length];

 tmp.getChars(0, length, c, 0);
 CharArrayReader input1 = new CharArrayReader(c);
 CharArrayReader input2 = new CharArrayReader(c, 0, 5);

 int i;
 System.out.println("input1 is:");
 while((i = input1.read()) != -1) {
 System.out.print((char)i);
 }
 System.out.println();

 System.out.println("input2 is:");
 while((i = input2.read()) != -1) {
 System.out.print((char)i);
 }
 System.out.println();
 }
}

Yogidham, kalawad road, RAJKOT 196

Atmiya Infotech

File, RandomAccessFile

File is an abstract representation of file and directory pathnames.
User interfaces and operating systems use system-dependent pathname
strings to name files and directories. This class presents an abstract,
system-independent view of hierarchical pathnames.

RandomAccessFile class’s instances support both reading and writing to
a random access file. A random access file behaves like a large array of
bytes stored in the file system. There is a kind of cursor, or index into
the implied array, called the file pointer; input operations read bytes
starting at the file pointer and advance the file pointer past the bytes
read. The random access file is created in read/write mode.

import java.io.*;
class FileInfo {
 public static void main (String args[]) {
 System.out.println("Enter file name: ");
 char c;
 StringBuffer buf = new StringBuffer();
 try {
 Reader in = new InputStreamReader(System.in);
 while ((c = (char)in.read()) != '\n')
 buf.append(c);
 }
 catch (Exception e) {
 System.out.println("Error: " + e.toString());
 }
 File file = new File(buf.toString());
 System.out.println("sop :: "+buf.toString());

 System.out.println("File Name : " + file.getName());
 System.out.println(" Path : " + file.getPath());
 System.out.println("Abs. Path : " + file.getAbsolutePath());
 System.out.println("Writable : " + file.canWrite());

Yogidham, kalawad road, RAJKOT 197

Atmiya Infotech

 System.out.println("Readable : " + file.canRead());
 System.out.println("Length : " + (file.length() / 1024) + "KB");
 }

}
import java.io.*;

public class RandomIOApp {
 public static void main(String args[]) throws IOException {
 RandomAccessFile file = new RandomAccessFile("test.txt","rw");
 file.writeBoolean(true);
 file.writeInt(123456);
 file.writeChar('j');
 file.writeDouble(1234.56);
 file.seek(1);
 System.out.println(file.readInt());
 System.out.println(file.readChar());
 System.out.println(file.readDouble());
 file.seek(0);
 System.out.println(file.readBoolean());
 file.close();
 }
}

PrintWriter
import java.io.*;
class PrintWriterDemo {
public static void main(String args[]) {

 try {

 // Create a print writer
 PrintWriter pw = new PrintWriter(System.out);

Yogidham, kalawad road, RAJKOT 198

Atmiya Infotech

 // Experiment with some methods
 pw.println(true);
 pw.println('A');
 pw.println(500);
 pw.println(40000L);
 pw.println(45.67f);
 pw.println(45.67);
 pw.println("Hello");
 pw.println(new Integer("99"));

 // Close print writer
 pw.close();
 }
 catch(Exception e) {
 System.out.println("Exception: " + e);
 }
 }
}

PushbackInputStream, PushbackReader

A PushbackInputStream adds functionality to another input stream,
namely the ability to "push back" or "unread" one byte. This is useful in
situations where it is convenient for a fragment of code to read an
indefinite number of data bytes that are delimited by a particular byte
value; after reading the terminating byte, the code fragment can "unread"
it, so that the next read operation on the input stream will reread the byte
that was pushed back. For example, bytes representing the characters
constituting an identifier might be terminated by a byte representing an
operator character; a method whose job is to read just an identifier can
read until it sees the operator and then push the operator back to be re-
read.

Yogidham, kalawad road, RAJKOT 199

Atmiya Infotech

PushbackReader is a character-stream reader that allows characters to be
pushed back into the stream.

ObjectInputStream, ObjectOutputStream

An ObjectInputStream deserializes primitive data and objects previously
written using an ObjectOutputStream. ObjectOutputStream and
ObjectInputStream can provide an application with persistent storage for
graphs of objects when used with a FileOutputStream and
FileInputStream respectively. ObjectInputStream is used to recover
those objects previously serialized. Other uses include passing objects
between hosts using a socket stream or for marshaling and unmarshaling
arguments and parameters in a remote communication system.

An ObjectOutputStream writes primitive data types and graphs of Java
objects to an OutputStream (called Serialization). The objects can be
read (reconstituted) using an ObjectInputStream. Persistent storage of
objects can be accomplished by using a file for the stream. If the stream
is a network socket stream, the objects can be reconsituted on another
host or in another process.

import java.io.*;

public class SerializationDemo {
 public static void main(String args[]) {

 // Object serialization
 try {
 MyClass object1 = new MyClass("Hello", -7, 2.7e10);
 System.out.println("object1: " + object1);

Yogidham, kalawad road, RAJKOT 200

Atmiya Infotech

 FileOutputStream fos = new FileOutputStream("serial");
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(object1);
 oos.flush();
 oos.close();
 }
 catch(Exception e) {
 System.out.println("Exception during serialization: " + e);
 System.exit(0);
 }

 // Object deserialization
 try {
 MyClass object2;
 FileInputStream fis = new FileInputStream("serial");
 ObjectInputStream ois = new ObjectInputStream(fis);
 object2 = (MyClass)ois.readObject();
 ois.close();
 System.out.println("object2: " + object2);
 }
 catch(Exception e) {
 System.out.println("Exception during deserialization: " + e);
 System.exit(0);
 }
 }
}

class MyClass implements Serializable {
 String s;
 int i;
 double d;
 public MyClass(String s, int i, double d) {
 this.s = s;
 this.i = i;
 this.d = d;

Yogidham, kalawad road, RAJKOT 201

Atmiya Infotech

 }
 public String toString() {
 return "s=" + s + "; i=" + i + "; d=" + d;
 }

AWT Fundamentals

Graphical User Interfaces

The JavaTM programming language provides a class library called
the Abstract Window Toolkit (AWT) that contains a number of
common graphical widgets. You can add these widgets to your
display area and position them with a layout manager.

AWT Basics

All graphical user interface objects derived from a common
superclass, Component. To create a Graphical User Interface
(GUI), you add components to a Container object. Because a
Container is also a Component, containers may be nested
arbitrarily. Most often, you will use a Panel when creating nested
GUIs.
Each AWT component uses native code to display itself on your
screen. When you run a Java application under Microsoft
Windows, buttons are really Microsoft Windows buttons. When
you run the same application on a Macintosh, buttons are really
Macintosh buttons. When you run on a UNIX machine that uses
Motif, buttons are really Motif buttons.

Applications versus Applets

Recall that an Applet is a Java program that runs in a web page,
while an application is one that runs from the command line. An
Applet is a Panel that is automatically inserted into a web page.
The browser displaying the web page instantiates and adds the

Yogidham, kalawad road, RAJKOT 202

Atmiya Infotech

Applet to the proper part of the web page. The browser tells the
Applet when to create its GUI (by calling the init() method of
Applet) and when to start() and stop() any special processing.
Applications run from a command prompt. When you execute an
application from the command prompt, the interpreter starts by
calling the application's main() method.

Basic GUI Logic

There are three steps you take to create any GUI application or
applet:
1. Compose your GUI by adding components to Container
objects
2. Setup event handlers to respond to user interaction with the
GUI
3. Display the GUI (automatically done for applets, you must
explicitly do this for applications)
When you display an AWT GUI, the interpreter starts a new
thread to watch for user interaction with the GUI. This new thread
sits and waits until a user presses a key, clicks or moves the
mouse, or any other system-level event that affects the GUI.
When it receives such an event, it calls one of the event handlers
you set up for the GUI. Note that the event handler code is
executed within the thread that watches the GUI.
Because this extra thread exists, your main method can simply
end after it displays the GUI. This makes GUI code very simple to
write in AWT. Compose the GUI, setup event handlers, then
display.

A Simple Example

The following simple example shows some GUI code. This
example creates an Applet.

Yogidham, kalawad road, RAJKOT 203

Atmiya Infotech

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

/*<applet code="App1" width=200 height=200></applet>*/

class ABC implements ActionListener
{
 public void actionPerformed(ActionEvent ae)
 {
 Frame f=new Frame("Dreams Unlimited....");
 f.setLocation(300,400);
 f.setSize(200,100);
 f.setVisible(true);
 }
}

public class App1 extends Applet
{
 Button b;

 public void start()
 {
 b = new Button("OK");
 b.addActionListener(new ABC());

 add(b);
 }
}
When actionPerformed() is called, it generates a Frame

To try this applet, create a simple HTML page as follows.

Yogidham, kalawad road, RAJKOT 204

Atmiya Infotech

<html>
 <applet code=App1.class width=100 height=100>
 </applet>
</html>

Then test the HTML page by running appletviewer or by loading
the HTML file in a browser that supports the Java Runtime
Environment (JRE). Note that in this case, the browser must
support at least version 1.1 of the JRE, as the example uses the
event handling capabilities introduced with that release.

AWT Components

All AWT components extend class Component. Think of
Component as the "root of all evil" for AWT. Having this single
class is rather useful, as the library designers can put a lot of
common code into it.

Next, examine each of the AWT components below. Most, but not
all, directly extend Component. You've used most of the
components should be familiar to you.

Buttons
A Button has a single line label and may be "pushed" with a
mouse click.

import java.awt.*;
import java.applet.Applet;

public class ButtonTest extends Applet {
 public void init() {
 Button button = new Button("OK");
 add(button);

Yogidham, kalawad road, RAJKOT 205

Atmiya Infotech

 }
}

Note that in the above example there is no event handling added;
pressing the button will not do anything.
The AWT button has no direct support for images as labels.

Canvas
A Canvas is a graphical component representing a region where
you can draw things such as rectangles, circles, and text strings.
The name comes from a painter's canvas. You subclass Canvas
to override its default paint() method to define your own
components.

You can subclass Canvas to provide a custom graphic in an
applet.

import java.awt.Canvas;
import java.awt.Graphics;

class DrawingRegion extends Canvas {
 public DrawingRegion() {
 setSize(100, 50);
 }
 public void paint(Graphics g) {
 g.drawRect(0, 0, 99, 49); // draw border
 g.drawString("A Canvas", 20,20);
 }
}
Then you use it like any other component, adding it to a parent
container, for example in an Applet subclass.

import java.applet.Applet;

Yogidham, kalawad road, RAJKOT 206

Atmiya Infotech

public class CanvasPaintTest extends Applet {
 public void init() {
 DrawingRegion region = new DrawingRegion();
 add(region);
 }
The Canvas class is frequently extended to create new
component types, for example image buttons. However, starting
with the JRE 1.1, you can now directly subclass Component
directly to create lightweight, transparent widgets.

Checkbox
A Checkbox is a label with a small pushbutton. The state of a
Checkbox is either true (button is checked) or false (button not
checked). The default initial state is false. Clicking a Checkbox
toggles its state. For example:

import java.awt.*;
import java.applet.Applet;

public class CheckboxSimpleTest extends Applet {
 public void init() {
 Checkbox m = new Checkbox("Allow Mixed Case");
 add(m);
 }
}
To set a Checkbox initially true use an alternate constructor:

import java.awt.*;
import java.applet.Applet;

public class CheckboxSimpleTest2 extends Applet {
 public void init() {

Yogidham, kalawad road, RAJKOT 207

Atmiya Infotech

 Checkbox m = new Checkbox("Label", true);
 add(m);
 }
}

CheckboxGroup
A CheckboxGroup is used to control the behavior of a group of
Checkbox objects (each of which has a true or false state).
Exactly one of the Checkbox objects is allowed to be true at one
time. Checkbox objects controlled with a CheckboxGroup are
usually referred to as "radio buttons".
The following example illustrates the basic idea behind radio
buttons.

import java.awt.*;
import java.applet.Applet;

public class CheckboxGroupTest extends Applet {
 public void init() {
 // create button controller
 CheckboxGroup cbg = new CheckboxGroup();

 Checkbox cb1 =
 new Checkbox("Show lowercase only", cbg, true);
 Checkbox cb2 =
 new Checkbox("Show uppercase only", cbg, false);

 add(cb1);
 add(cb2);
 }
}

Yogidham, kalawad road, RAJKOT 208

Atmiya Infotech

Choice
Choice objects are drop-down lists. The visible label of the Choice
object is the currently selected entry of the Choice.

import java.awt.*;
import java.applet.Applet;

public class ChoiceSimpleTest extends Applet {
 public void init() {
 Choice rgb = new Choice();

 rgb.add("Red");
 rgb.add("Green");
 rgb.add("Blue");

 add(rgb);
 }
}
The first item added is the initial selection.

Label
A Label is a displayed Label object. It is usually used to help
indicate what other parts of the GUI do, such as the purpose of a
neighboring text field.

import java.awt.*;
import java.applet.Applet;

public class LabelTest extends Applet {
 public void init() {
 add(new Label("A label"));

Yogidham, kalawad road, RAJKOT 209

Atmiya Infotech

 // right justify next label
 add(new Label("Another label", Label.RIGHT));
 }
}
Like the Button component, a Label is restricted to a single line of
text.

List
A List is a scrolling list box that allows you to select one or more
items.
Multiple selections may be used by passing true as the second
argument to the constructor.

import java.awt.*;
import java.applet.Applet;

public class ListSimpleTest extends Applet {
 public void init() {
 List list = new List(5, false);
 list.add("Seattle");
 list.add("Washington");
 list.add("New York");
 list.add("Chicago");
 list.add("Miami");
 list.add("San Jose");
 list.add("Denver");

 add(list);
 }
}
The constructor may contain a preferred number of lines to
display. The current LayoutManager may choose to respect or
ignore this request.

Yogidham, kalawad road, RAJKOT 210

Atmiya Infotech

Scrollbar
A Scrollbar is a "slider" widget with characteristics specified by
integer values that are set during Scrollbar construction. Both
horizontal and vertical sliders are available.

import java.awt.*;
import java.applet.Applet;

// A simple example that makes a Scrollbar appear
public class ScrollbarSimpleTest extends Applet {
 public void init() {
 Scrollbar sb =
 new Scrollbar(Scrollbar.HORIZONTAL,
 0, // initial value is 0
 5, // width of slider
 -100, 105); // range -100 to 100
 add(sb);
 }
}
The maximum value of the Scrollbar is determined by subtracting
the Scrollbar
width from the maximum setting (last parameter).

TextField
A TextField is a scrollable text display object with one row of
characters. The preferred width of the field may be specified
during construction and an initial string may be specified.

import java.awt.*;
import java.applet.Applet;

public class TextFieldSimpleTest extends Applet {

Yogidham, kalawad road, RAJKOT 211

Atmiya Infotech

 public void init() {
 TextField f1 =
 new TextField("type something");
 add(f1);
 }
}
Tips:
· Call setEditable(true) to make the field read-only.
· The constructor has an optional width parameter.

This does not control the number of characters in the TextField,
but is merely a suggestion of the preferred width on the screen.
Note that layout managers may choose to respect or ignore this
preferred width.
For password fields:
field.setEchoChar('?');
To clear/reset:
field.setEchoChar((char)0);

TextArea
A TextArea is a multi-row text field that displays a single string of
characters, where newline ('\n' or '\n\r' or '\r', depending on
platform) ends each row. The width and height of the field is set at
construction, but the text can be scrolled up/down and left/right.

import java.awt.*;
import java.applet.Applet;

public class TextAreaSimpleTest extends Applet {
 TextArea disp;
 public void init() {
 disp = new TextArea("Code goes here", 10, 30);
 add(disp);
 }

Yogidham, kalawad road, RAJKOT 212

Atmiya Infotech

}
There is no way, for example, to put the cursor at beginning of
row five, only to put the cursor at single dimension position 50.
There is a four-argument constructor that accepts a fourth
parameter of a scrollbar policy. The different settings are the class
constants: SCROLLBARS_BOTH,
SCROLLBARS_HORIZONTAL_ONLY, SCROLLBARS_NONE,
and SCROLLBARS_VERTICAL_ONLY. When the horizontal
(bottom) scrollbar is not present, the text will wrap.

import java.awt.*;
import java.applet.Applet;

public class TextAreaScroll extends Applet {
 String s =
 "This is a very long message " +
 "It should wrap when there is " +
 "no horizontal scrollbar.";
 public void init() {
 add(new TextArea (s, 4, 15,
 TextArea.SCROLLBARS_NONE));
 add(new TextArea (s, 4, 15,
 TextArea.SCROLLBARS_BOTH));
 add(new TextArea (s, 4, 15,
 TextArea.SCROLLBARS_HORIZONTAL_ONLY));
 add(new TextArea (s, 4, 15,
 TextArea.SCROLLBARS_VERTICAL_ONLY));
 }
}

Yogidham, kalawad road, RAJKOT 213

Atmiya Infotech

Common Component Methods
All AWT components share the 100-plus methods inherited from
the Component class. Some of the most useful and commonly-
used methods are listed below:

 getSize() - Gets current size of component, as a Dimension.

· Dimension d = someComponent.getSize();
· int height = d.height;
· int width = d.width;

Note: With the Java 2 Platform, you can directly access the width
and height using the getWidth() and getHeight() methods. This is
more efficient, as the component doesn't need to create a new
Dimension object. For example:

int height = someComponent.getHeight();
int width = someComponent.getWidth();

if you need a Dimension object, you should only use getSize()

 getLocation() - Gets position of component, relative to
containing component, as a Point.

 Point p = someComponent.getLocation();
 int x = p.x;
 int y = p.y;
Note: With the Java 2 Platform, you can directly access the x and
y parts of the location using getX() and getY(). This is more
efficient, as the component doesn't have to create a new Point
object. For example:

int x = someComponent.getX();
int y = someComponent.getY();

Yogidham, kalawad road, RAJKOT 214

Atmiya Infotech

If you're using the Java 2 platform, you should only use
getLocation() if you really need a Point object
getLocationOnScreen() - Gets the position of the component
relative to the upper-left corner of the computer screen, as a
Point.

 Point p = someComponent.getLocationOnScreen();
 int x = p.x;
 int y = p.y;

• getBounds() - Gets current bounding Rectangle of

component.

 Rectangle r = someComponent.getBounds();
 int height = r.height;
 int width = r.width;
 int x = r.x;

int y = r.y;
This is like a combination of calling getLocation() and getSize().
Note: If you're using the Java 2 Platform and don't really need a
Rectangle object, you should use getX(), getY(), getWidth(), and
getHeight() instead.

• • setEnabled(boolean) - Toggles the state of the

component.

If set to true, the component will react to user input and appear
normal. If set to false, the component will ignore user interaction,
and usually appear ghosted or grayed-out.

• • setVisible(boolean) - Toggles the visibility state of the

component.

Yogidham, kalawad road, RAJKOT 215

Atmiya Infotech

If set to true, the component will appear on the screen if it is
contained in a visible container. If false, the component will not
appear on the screen.

Note that if a component is marked as not visible, any layout
manager that is responsible for that component will usually
proceed with the layout algorithm as though the component were
not in the parent container! This means that making a component
invisible will not simply make it disappear while reserving its
space in the GUI. Making the component invisible will cause the
layout of its sibling components to readjust.

• • setBackground(Color)/setForeground(Color) - Changes

component background/foreground colors.

• • setFont(Font) - Changes font of text within component.

Containers

A Container is a Component, so may be nested. Class Panel is
the most commonly-used Panel and can be extended to partition
GUIs. Class Applet is a specialized Panel for running programs
within a browser.

Common Container Methods
Besides the 100-plus methods inherited from the Component
class, all Container subclasses inherit the behavior of about 50
common methods of Container (most of which just override a
method of Component). While the most common method of
Container used add(), has already been briefly discussed, if you
need to access the list of components within a container, you may

Yogidham, kalawad road, RAJKOT 216

Atmiya Infotech

find the getComponentCount(), getComponents(), and
getComponent(int) methods helpful.

ScrollPane
The ScrollPane container was introduced with the 1.1 release of
the Java Runtime Environment (JRE) to provide a new Container
with automatic scrolling of any one large Component. That large
object could be anything from an image that is too big for the
display area to a bunch of spreadsheet cells. All the event
handling mechanisms for scrolling are managed for you. Also,
there is no LayoutManager for a ScrollPane since there is only a
single object within it.
The following example demonstrates the scrolling of a large
image. Since an Image object is not a Component, the image
must be drawn by a component such as a Canvas.

import java.awt.*;
import java.applet.*;

class ImageCanvas extends Component {
 private Image image;
 public ImageCanvas(Image i) {
 image = i;
 }
 public void paint(Graphics g) {
 if (image != null)
 g.drawImage(image, 0, 0, this);
 }
}

public class ScrollingImage extends Applet {
 public void init() {
 setLayout(new BorderLayout());
 ScrollPane sp =
 new ScrollPane(ScrollPane.SCROLLBARS_ALWAYS);

Yogidham, kalawad road, RAJKOT 217

Atmiya Infotech

 Image im =
 getImage(getCodeBase(), "./images/kid.gif");
 sp.add(new ImageCanvas(im));
 add(sp, BorderLayout.CENTER);
 }
}

Event Handling

Events
Beginning with the 1.1 version of the JRE, objects register as
listeners for events. If there are no listeners when an event
happens, nothing happens. If there are twenty listeners
registered, each is given an opportunity to process the event, in
an undefined order. With a Button, for example, activating the
button notifies any registered ActionListener objects. Consider
SimpleButtonEvent applet which creates a Button instance and
registers itself as the listener for the button's action events:

import java.awt.*;
import java.awt.event.*;
import java.applet.Applet;

public class SimpleButtonEvent extends Applet
 implements ActionListener {
 private Button b;

 public void init() {
 b = new Button("Press me");
 b.addActionListener(this);
 add(b);
 }

 public void actionPerformed(ActionEvent e) {

Yogidham, kalawad road, RAJKOT 218

Atmiya Infotech

 // If the target of the event was our Button
 // In this example, the check is not
 // truly necessary as we only listen to
 // a single button
 if (e.getSource() == b) {
 getGraphics().drawString("OUCH",20,20);
 }
 }
}
Notice that any class can implement ActionListener, including, in
this case, the applet itself. All listeners are always notified.

So, here is how everything works:
 Components generate subclasses of AWTEvent when
something interesting happens.
 Event sources permit any class to be a listener using the
addXXXListener() method, where XXX is the event type you can
listen for, for example addActionListener(). You can also remove
listeners using the removeXXXListener() methods. If there is an
add/removeXXXListener() pair, then the component is a source
for the event when the appropriate action happens.
 In order to be an event handler you have to implement the
listener type, otherwise, you cannot be added, ActionListener
being one such type.
 Some listener types are special and require you to
implement multiple methods. For instance, if you are interested in
key events, and register a KeyListener, you have to implement
three methods, one for key press, one for key release, and one
for both, key typed. If you only care about key typed events, it
doesn't make sense to have to stub out the other two methods.
There are special classes out there called adapters that
implement the listener interfaces and stub out all the methods.
Then, you only need to subclass the adapter and override the
necessary method(s).

Yogidham, kalawad road, RAJKOT 219

Atmiya Infotech

AWTEvent

Events subclass the AWTEvent class. And nearly every event-
type has an associated Listener interface, PaintEvent and
InputEvent do not. (With PaintEvent, you just override paint() and
update(), for InputEvent, you listen for subclass events, since it is
abstract.

Low-level Events
Low-level events represent a low-level input or window operation,
like a key press, mouse movement, or window opening. The
following table displays the different low-level events, and the
operations that generate each event (each operation corresponds
to a method of the listener interface):

ComponentEvent Hiding, moving, resizing,

showing
ContainerEvent Adding/removing

component
FocusEvent Getting/losing focus
KeyEvent Pressing, releasing, or

typing (both) a key
MouseEvent Clicking, dragging, entering,

exiting, moving, pressing,
or releasing

WindowEvent Iconifying, deiconifying,
opening, closing, really
closed, activating,
deactivating

For instance, typing the letter 'A' on the keyboard generates three
events, one for pressing, one for releasing, and one for typing.

Yogidham, kalawad road, RAJKOT 220

Atmiya Infotech

Depending upon your interests, you can do something for any of
the three events.

Semantic Events
Semantic events represent interaction with a GUI component; for
instance selecting a button, or changing the text of a text field.
Which components generate which events is shown in the next
section.

ActionEvent Do the
command

AdjustmentEvent Value
adjusted

ItemEvent State
changed

TextEvent Text
changed

Event Sources
The following table represents the different event sources. Keep
in mind the object hierarchy. For instance, when Component is an
event source for something, so are all its subclasses:

Low-Level Events

Component

ComponentListener
KeyListener
MouseMotionListener
FocusListener

Yogidham, kalawad road, RAJKOT 221

Atmiya Infotech

MouseListener

Container ContainerListener
Window WindowListener

Semantic Events

ActionListener

List
TextField
Button
MenuItem

Checkbox
Choice
CheckboxMenuItem
List

ItemListener

Scrollbar AdjustmentListener
TextArea
TextListener TextField

Notice that although there is only one MouseEvent class, the
listeners are spread across two interfaces. This is for performance
issues. Since motion mouse events are generated more
frequently, if you have no interest in them, you can ignore them
more easily, without the performance hit.

Event Listeners
Each listener interface is paired with one event type and contains
a method for each type of event the event class embodies. For
instance, the KeyListener contains three methods, one for each
type of event that the KeyEvent has: keyPressed(),
keyReleased(), and keyTyped().

Yogidham, kalawad road, RAJKOT 222

Atmiya Infotech

Summary of Listener interfaces and their methods
Interface Method(s)

ActionListener actionPerformed(ActionEvent e)

AdjustmentListener
adjustmentValueChanged(AdjustmentEvent

e)

componentHidden(ComponentEvent e)

componentMoved(ComponentEvent e)

componentResized(ComponentEvent e)
ComponentListener

componentShown(ComponentEvent e)

componentAdded(ContainerEvent e)
ContainerListener

componentRemoved(ContainerEvent e)

FocusGained(FocusEvent e)
FocusListener

focusLost(FocusEvent e)

ItemListener itemStateChanged(ItemEvent e)

keyPressed(KeyEvent e)

keyReleased(KeyEvent e) KeyListener

keyTyped(KeyEvent e)

mouseClicked(MouseEvent e)

mouseEntered(MouseEvent e)

MouseListener

mouseExited(MouseEvent e)

Yogidham, kalawad road, RAJKOT 223

Atmiya Infotech

mousePressed(MouseEvent e)

mouseReleased(MouseEvent e)

mouseDragged(MouseEvent e)
MouseMotionListener

mouseMoved(MouseEvent e)

TextListener textValueChanged(TextEvent e)

windowActivated(WindowEvent e)

windowClosed(WindowEvent e)

windowClosing(WindowEvent e)

windowDeactivated(WindowEvent e)

windowDeiconified(WindowEvent e)

windowIconified(WindowEvent e)

WindowListener

windowOpened(WindowEvent e)

Event Adapters
Since the low-level event listeners have multiple methods to
implement, there are event adapter classes to ease the pain.
Instead of implementing the interface and stubbing out the
methods you do not care about, you can subclass the appropriate
adapter class and just override the one or two methods you are
interested in. Since the semantic listeners only contain one
method to implement, there is no need for adapter classes.

Yogidham, kalawad road, RAJKOT 224

Atmiya Infotech

public class MyKeyAdapter extends KeyAdapter {
 public void keyTyped(KeyEvent e) {
 System.out.println("User typed: " +
 KeyEvent.getKeyText(e.getKeyCode()));
 }
}
Button Pressing Example
The following code demonstrates the basic concept a little more
beyond the earlier example. There are three buttons within a
Frame, their displayed labels may be internationalized so you
need to preserve their purpose within a command associated with
the button. Based upon which button is pressed, a different action
occurs.

import java.awt.*;
import java.awt.event.*;

public class Activator {
 public static void main(String[] args) {
 Button b;
 ActionListener al = new MyActionListener();
 Frame f = new Frame("Hello Java");
 f.add(b = new Button("Hola"), BorderLayout.NORTH);
 b.setActionCommand("Hello");
 b.addActionListener(al);
 f.add(b = new Button("Aloha"), BorderLayout.CENTER);
 b.addActionListener(al);
 f.add(b = new Button("Adios"), BorderLayout.SOUTH);
 b.setActionCommand("Quit");
 b.addActionListener(al);
 f.pack();
 f.show();
 }
}

Yogidham, kalawad road, RAJKOT 225

http://www.buginword.com
http://java.sun.com/products/jdk/1.2/docs/api/java.util.Collection.html
http://www.buginword.com
http://www.buginword.com
http://www.buginword.com

Atmiya Infotech

class MyActionListener implements ActionListener {
 public void actionPerformed(ActionEvent e) {
 // Action Command is not necessarily label
 String s = e.getActionCommand();
 if (s.equals("Quit")) {
 System.exit(0);
 }
 else if (s.equals("Hello")) {
 System.out.println("Bon Jour");
 }
 else {
 System.out.println(s + " selected");
 }
 }
}

Since this is an application, you need to save the source (as
Activator.java), compile, and run it.

Adapters Example
The following code demonstrates using an adapter as an
anonymous inner class to draw a rectangle within an applet. The
mouse press signifies the top left corner to draw, with the mouse
release the bottom right.

import java.awt.*;
import java.awt.event.*;

public class Draw extends java.applet.Applet {
 public void init() {
 addMouseListener(
 new MouseAdapter() {
 int savedX, savedY;

Yogidham, kalawad road, RAJKOT 226

Atmiya Infotech

 public void mousePressed(MouseEvent e) {
 savedX = e.getX();
 savedY = e.getY();
 }
 public void mouseReleased(MouseEvent e) {
 Graphics g = Draw.this.getGraphics();
 g.drawRect(savedX, savedY,
 e.getX()-savedX,
 e.getY()-savedY);
 }
 }
);
 }
}

Applications and Menus

GUI-based Applications
To create a window for your application, define a subclass of
Frame (a Window with a title, menubar, and border) and have the
main method construct an instance of that class.

Applications respond to events in the same way as applets do.
The following example, BasicApplication, responds to the native
window toolkit quit, or closing, operation:

import java.awt.*;
import java.awt.event.*;

public class BasicApplication extends Frame {
 public BasicApplication() {
 super("BasicApplication Title");
 setSize(200, 200);
 // add a demo component to this frame
 add(new Label("Application Template...", Label.CENTER),

Yogidham, kalawad road, RAJKOT 227

Atmiya Infotech

 BorderLayout.CENTER);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 setVisible(false); dispose();
 System.exit(0);
 }
 });
 }

 public static void main(String[] args) {
 BasicApplication app = new BasicApplication();
 app.setVisible(true);
 }
}

Consider an application that displays the x,y location of the last
mouse click and provides a button to reset the displayed x,y
coordinates to 0,0:

import java.awt.*;
import java.awt.event.*;
public class CursorFrame extends Frame {
 TextField a, b;
 Button btn;
 public CursorFrame() {
 super("CursorFrame");
 setSize(400, 200);
 setLayout(new FlowLayout());
 add(new Label("Click the mouse..."));
 a = new TextField("0", 4);
 b = new TextField("0", 4);
 btn = new Button("RESET");
 add(a); add(b); add(btn);
 addMouseListener(new MouseAdapter() {

Yogidham, kalawad road, RAJKOT 228

Atmiya Infotech

 public void mousePressed(MouseEvent e) {
 a.setText(String.valueOf(e.getX()));
 b.setText(String.valueOf(e.getY()));
 }
 });
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 setVisible(false);
 dispose();
 System.exit(0);
 }
 });
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 a.setText("0");
 b.setText("0");
 }
 });
 }
 public static void main(String[] args) {
 CursorFrame app = new CursorFrame();
 app.setVisible(true);
 }
}

This application provides anonymous classes to handle mouse
events, application window closing events, and the action event
for resetting the text fields that report mouse coordinates.

When you have a very common operation, such as handling
application window closing events, it often makes sense to
abstract out this behavior and handle it elsewhere. In this case,
it's logical to do this by extending the existing Frame class,
creating the specialization AppFrame:

Yogidham, kalawad road, RAJKOT 229

Atmiya Infotech

import java.awt.*;
import java.awt.event.*;

public class AppFrame extends Frame
 implements WindowListener {
 public AppFrame(String title) {
 super(title);
 addWindowListener(this);
 }
 public void windowClosing(WindowEvent e) {
 setVisible(false);
 dispose();
 System.exit(0);
 }
 public void windowClosed(WindowEvent e) {}
 public void windowDeactivated(WindowEvent e) {}
 public void windowActivated(WindowEvent e) {}
 public void windowDeiconified(WindowEvent e) {}
 public void windowIconified(WindowEvent e) {}
 public void windowOpened(WindowEvent e) {}
}

AppFrame directly implements WindowListener, providing empty
methods for all but one window event, namely, the window closing
operation. With this definition, applications such as CursorFrame
can extend AppFrame instead of Frame and avoid having to
provide the anonymous class for window closing operations:

Applications: Dialog Boxes

A Dialog is a window that requires input from the user.
Components may be added to the Dialog like any other container.
Like a Frame, a Dialog is initially invisible. You must call the
method setVisible() to activate the dialog box.

Yogidham, kalawad road, RAJKOT 230

Atmiya Infotech

import java.awt.*;
import java.awt.event.*;

public class DialogFrame extends AppFrame {
 Dialog d;

 public DialogFrame() {
 super("DialogFrame");
 setSize(200, 100);
 Button btn, dbtn;
 add(btn = new Button("Press for Dialog Box"),
 BorderLayout.SOUTH);
 d = new Dialog(this, "Dialog Box", false);
 d.setSize(150, 150);
 d.add(new Label("This is the dialog box."),
 BorderLayout.CENTER);
 d.add(dbtn = new Button("OK"),
 BorderLayout.SOUTH);
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 d.setVisible(true);
 }
 });
 dbtn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 d.setVisible(false);
 }
 });
 d.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 d.setVisible(false);
 }
 });
 }

Yogidham, kalawad road, RAJKOT 231

Atmiya Infotech

 public static void main(String[] args) {
 DialogFrame app = new DialogFrame();
 app.setVisible(true);
 }
}

Again, you can define anonymous classes on the fly for:
1. Activating the dialog window from the main application's
command button.
2. Deactivating the dialog window from the dialog's command
button.
3. Deactivating the dialog window in response to a native
window system's closing operation.

Although the anonymous class functionality is quite elegant, it is
inconvenient to have to repeatedly include the window-closing
functionality for every dialog instance that your applications
instantiate by coding and registering the anonymous window
adapter class. As with AppFrame, you can define a specialization
of Dialog that adds this functionality and thereafter simply use the
enhanced class. For example, WMDialog provides this
functionality:

import java.awt.*;
import java.awt.event.*;
public class WMDialog extends Dialog
 implements WindowListener {
 public WMDialog(Frame ref, String title, boolean modal) {
 super(ref, title, modal);
 addWindowListener(this);
 }
 public void windowClosing(WindowEvent e) {
 setVisible(false);
 }
 public void windowClosed(WindowEvent e) {}

Yogidham, kalawad road, RAJKOT 232

Atmiya Infotech

 public void windowDeactivated(WindowEvent e) {}
 public void windowActivated(WindowEvent e) {}
 public void windowDeiconified(WindowEvent e) {}
 public void windowIconified(WindowEvent e) {}
 public void windowOpened(WindowEvent e) {}
}

Applications: Menus
An application can have a MenuBar object containing Menu
objects that are comprised of MenuItem objects. Each MenuItem
can be a string, menu, checkbox, or separator (a line across the
menu).
To add menus to any Frame or subclass of Frame:
1. Create a MenuBar
2.
3. MenuBar mb = new MenuBar();
4. Create a Menu
5.
6. Menu m = new Menu("File");
7. Create your MenuItem choices and add each to the Menu, in
the order you want them to appear, from top to bottom.
8.
9. m.add(new MenuItem("Open"));
10. m.addSeparator(); // add a separator
11. m.add(new CheckboxMenuItem("Allow writing"));
12. // Create submenu
13. Menu sub = new Menu("Options...");
14. sub.add(new MenuItem("Option 1"));
15. m.add(sub); // add sub to File menu
16. Add each Menu to the MenuBar in the order you want them
to appear, from left to right.
17.
18. mb.add(m); // add File menu to bar

Yogidham, kalawad road, RAJKOT 233

Atmiya Infotech

19. Add the MenuBar to the Frame by calling the setMenuBar()
method .
20.
21. setMenuBar(mb); // set menu bar of your Frame
The following program, MainWindow, creates an application
window with a menu bar and several menus using the strategy
outlined above:

import java.awt.*;
import java.awt.event.*;

// Make a main window with two top-level menus: File and Help.
// Help has a submenu and demonstrates a few interesting menu
items.
public class MainWindow extends Frame {
 public MainWindow() {
 super("Menu System Test Window");
 setSize(200, 200);

 // make a top level File menu
 FileMenu fileMenu = new FileMenu(this);

 // make a top level Help menu
 HelpMenu helpMenu = new HelpMenu(this);

 // make a menu bar for this frame
 // and add top level menus File and Menu
 MenuBar mb = new MenuBar();
 mb.add(fileMenu);
 mb.add(helpMenu);
 setMenuBar(mb);
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {
 exit();

Yogidham, kalawad road, RAJKOT 234

Atmiya Infotech

 }
 });
 }

 public void exit() {
 setVisible(false); // hide the Frame
 dispose(); // tell windowing system to free resources
 System.exit(0); // exit
 }

 public static void main(String args[]) {
 MainWindow w = new MainWindow();
 w.setVisible(true);
 }
}

// Encapsulate the look and behavior of the File menu
class FileMenu extends Menu implements ActionListener {
 MainWindow mw; // who owns us?
 public FileMenu(MainWindow m) {
 super("File");
 mw = m;
 MenuItem mi;
 add(mi = new MenuItem("Open"));
 mi.addActionListener(this);
 add(mi = new MenuItem("Close"));
 mi.addActionListener(this);
 add(mi = new MenuItem("Exit"));
 mi.addActionListener(this);
 }
 // respond to the Exit menu choice
 public void actionPerformed(ActionEvent e) {
 String item = e.getActionCommand();
 if (item.equals("Exit"))
 mw.exit();

Yogidham, kalawad road, RAJKOT 235

Atmiya Infotech

 else
 System.out.println("Selected FileMenu " + item);
 }
}

// Encapsulate the look and behavior of the Help menu
class HelpMenu extends Menu implements ActionListener {
 MainWindow mw; // who owns us?
 public HelpMenu(MainWindow m) {
 super("Help");
 mw = m;
 MenuItem mi;
 add(mi = new MenuItem("Fundamentals"));
 mi.addActionListener(this);
 add(mi = new MenuItem("Advanced"));
 mi.addActionListener(this);
 addSeparator();
 add(mi = new CheckboxMenuItem("Have Read The Manual"));
 mi.addActionListener(this);
 add(mi = new CheckboxMenuItem("Have Not Read The
Manual"));
 mi.addActionListener(this);

 // make a Misc sub menu of Help menu
 Menu subMenu = new Menu("Misc");
 subMenu.add(mi = new MenuItem("Help!!!"));
 mi.addActionListener(this);
 subMenu.add(mi = new MenuItem("Why did that happen?"));
 mi.addActionListener(this);
 add(subMenu);
 }
 // respond to a few menu items
 public void actionPerformed(ActionEvent e) {
 String item = e.getActionCommand();
 if (item.equals("Fundamentals"))

Yogidham, kalawad road, RAJKOT 236

Atmiya Infotech

 System.out.println("Fundamentals");
 else if (item.equals("Help!!!"))
 System.out.println("Help!!!");
 // etc...
 }
}

Menu Shortcuts
One nice feature of the MenuItem class is its ability to provide
menu shortcuts or speed keys. For instance, in most applications
that provide printing capabilities, pressing Ctrl-P initiates the
printing process. When you create a MenuItem you can specify
the shortcut associated with it. If the user happens to press the
speed key, the action event is triggered for the menu item.
If you want to create two menu items with speed keys, Ctrl-P for
Print and Shift-Ctrl-P for Print Preview, the following code would
do that:

file.add (mi = new MenuItem ("Print",
 new MenuShortcut('p')));
file.add (mi = new MenuItem ("Print Preview",
 new MenuShortcut('p', true)));

The example above uses Ctrl-P and Shift-Ctrl-P shortcuts on
Windows/Motif. The use of Ctrl for the shortcut key is defined by
the Toolkit method

getMenuShortcutKeyMask(). For the Macintosh, this would be the
Command key. An optional boolean parameter to the constructor
determines the need for the Shift key appropriate to the platform.

Yogidham, kalawad road, RAJKOT 237

Atmiya Infotech

Pop-up Menus
One restriction of the Menu class is that it can only be added to a
Frame. If you want a menu in an Applet, you are out of luck
(unless you use the Swing component set). While not necessarily
a perfect solution, you can associate a pop-up menu with any
Component, of which Applet is a subclass. A PopupMenu is
similar to a Menu in that it holds MenuItem objects. However,
instead of appearing at the top of a Frame, you pop the popup
menu up over any component, usually when the user generates
the appropriate mouse event.

The actual mouse interaction to generate the event is platform
specific so there is the means to determine if a MouseEvent
triggers the pop-up menu via the MouseEvent.isPopupTrigger()
method. It is then your responsibility to position and display the
PopupMenu.

The following program, PopupApplication, demonstrates this
portable triggering of a pop-up menu, as well as activating a pop-
up menu from a command button:

import java.awt.*;
import java.awt.event.*;
public class PopupApplication extends AppFrame {
 Button btn; TextField msg; PopupAppMenu m;
 public PopupApplication() {
 super("PopupApplication");
 setSize(200, 200);
 btn = new Button("Press for pop-up menu...");
 add(btn, BorderLayout.NORTH);
 msg = new TextField();
 msg.setEditable(false);
 add(msg, BorderLayout.SOUTH);
 m = new PopupAppMenu(this);

Yogidham, kalawad road, RAJKOT 238

Atmiya Infotech

 add(m);
 btn.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 m.show(btn, 10, 10);
 }
 });
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 if (e.isPopupTrigger())
 m.show(e.getComponent(), e.getX(), e.getY());
 }
 public void mouseReleased(MouseEvent e) {
 if (e.isPopupTrigger())
 m.show(e.getComponent(), e.getX(), e.getY());
 }
 });
 }
 public static void main(String[] args) {
 PopupApplication app = new PopupApplication();
 app.setVisible(true);
 }
}

class PopupAppMenu extends PopupMenu
 implements ActionListener {
 PopupApplication ref;
 public PopupAppMenu(PopupApplication ref) {
 super("File");
 this.ref = ref;
 MenuItem mi;
 add(mi = new MenuItem("Copy"));
 mi.addActionListener(this);
 add(mi = new MenuItem("Cut"));
 mi.addActionListener(this);
 add(mi = new MenuItem("Paste"));

Yogidham, kalawad road, RAJKOT 239

Atmiya Infotech

 mi.addActionListener(this);
 }
 public void actionPerformed(ActionEvent e) {
 String item = e.getActionCommand();
 ref.msg.setText("Selected menu item: " + item);
 }
}

APPLET

Overview of Applets

This lesson discusses the parts of an applet. If you haven't yet
compiled an applet and included it in an HTML page, you
might want to do so now.

Every applet is implemented by creating a subclass of

the Applet class. The following figure shows the

inheritance hierarchy of the Applet class. This hierarchy

determines much of what an applet can do and how.

Yogidham, kalawad road, RAJKOT 240

Atmiya Infotech

A Simple Applet

Below is the source code for an applet called Simple. The

Simple applet displays a descriptive string whenever it
encounters a major milestone in its life, such as when the
user first visits the page the applet's on. The pages that follow
use the Simple applet and build upon it to illustrate concepts
that are common to many applets.

import java.applet.Applet;

import java.awt.Graphics;

public class Simple extends Applet {

 StringBuffer buffer;

 public void init() {

 buffer = new StringBuffer();

 addItem("initializing... ");

 }

 public void start() {

 addItem("starting... ");

 }

Yogidham, kalawad road, RAJKOT 241

Atmiya Infotech

 public void stop() {

 addItem("stopping... ");

 }

 public void destroy() {

 addItem("preparing for unloading...");

 }

 void addItem(String newWord) {

 System.out.println(newWord);

 buffer.append(newWord);

 repaint();

 }

 public void paint(Graphics g) {

 //Draw a Rectangle around the applet's

display area.

 g.drawRect(0, 0, size().width - 1,

size().height - 1);

 //Draw the current string inside the

rectangle.

 g.drawString(buffer.toString(), 5, 15);

Yogidham, kalawad road, RAJKOT 242

Atmiya Infotech

 }

}

Loading the Applet

You should see "initializing... starting..." above, as the result
of the applet being loaded. When an applet is loaded, here's
what happens:

• An instance of the applet's controlling class (an Applet
subclass) is created.

• The applet initializes itself.
• The applet starts running.

Leaving and Returning to the Applet's Page

When the user leaves the page -- for example, to go to
another page -- the applet has the option of stopping itself.
When the user returns to the page, the applet can start itself
again. The same sequence occurs when the user iconifies and
then reopens the window that contains the applet. (Other
terms used instead of iconify are minaturize, minimize, and
close.)

Reloading the Applet

Some browsers let the user reload applets, which consists of
unloading the applet and then loading it again. Before an
applet is unloaded, it's given the chance to stop itself and then
to perform a final cleanup, so that the applet can release any
resources it holds. After that, the applet is unloaded and then
loaded again, as described above.

Yogidham, kalawad road, RAJKOT 243

Atmiya Infotech

Quitting the Browser

When the user quits the browser (or whatever application is
displaying the applet), the applet has the chance to stop itself
and do final cleanup before the browser exits.

Summary

An applet can react to major events in the following ways:

• It can initialize itself.
• It can start running.
• It can stop running.
• It can perform a final cleanup, in preparation for being

unloaded.

Methods for Milestones

public class Simple extends Applet {

 . . .

 public void init() { . . . }

 public void start() { . . . }

 public void stop() { . . . }

 public void destroy() { . . . }

 . . .

}

The Simple applet, like every other applet, features a

subclass of the Applet class. The Simple class overrides four

Applet methods so that it can respond to major events:

Yogidham, kalawad road, RAJKOT 244

Atmiya Infotech

init
To initialize the applet each time it's loaded (or reloaded).
start
To start the applet's execution, such as when the applet's
loaded or when the user revisits a page that contains the
applet.
stop
To stop the applet's execution, such as when the user leaves
the applet's page or quits the browser.
destroy
To perform a final cleanup in preparation for unloading.

Not every applet needs to override every one of these

methods. Some very simple applets override none of

them.

The init method is useful for one-time initialization that

doesn't take very long. In general, the init method

should contain the code that you would normally put

into a constructor. The reason applets shouldn't usually

have constructors is that an applet isn't guaranteed to

have a full environment until its init method is called.

Every applet that does something after initialization

(except in direct response to user actions) must

override the start method. The start method either

Yogidham, kalawad road, RAJKOT 245

Atmiya Infotech

performs the applet's work or (more likely) starts up one

or more threads to perform the work.

Most applets that override start should also override the

stop method. The stop method should suspend the

applet's execution, so that it doesn't take up system

resources when the user isn't viewing the applet's page.

For example, an applet that displays animation should

stop trying to draw the animation when the user isn't

looking at it.

Many applets don't need to override the destroy

method, since their stop method (which is called before

destroy) does everything necessary to shut down the

applet's execution. However, destroy is available for

applets that need to release additional resources.

Methods for Drawing and Event Handling

The Simple applet defines its onscreen appearance by

overriding the paint method:

class Simple extends Applet {

 . . .

 public void paint(Graphics g) { . . . }

 . . .

Yogidham, kalawad road, RAJKOT 246

Atmiya Infotech

}

The paint method is one of two display methods an

applet can override:

paint

The basic display method. Many applets implement the paint
method to draw the applet's representation within a browser
page.
update

A method you can use along with paint to improve drawing
performance.

Applets inherit their paint and update

methods from the Applet class, which inherits

them from the Abstract Window Toolkit

(AWT) Component class. Applets inherit a

group of event-handling methods from the

Component class. To react to an event, an

applet must override either the appropriate

event-specific method.

Methods for Adding UI Components

The Simple applet's display code (implemented in its paint
method) is flawed: It doesn't support scrolling. Once the text
it displays reaches the end of the display rectangle, you can't
see any new text. Here's an example of the problem:

Yogidham, kalawad road, RAJKOT 247

Atmiya Infotech

The simplest cure for this problem is to use a pre-made

user interface (UI) component that has the right

behavior.

Pre-Made UI Components

The AWT supplies the following UI components (the class
that implements each component is listed in parentheses):

• Buttons (java.awt.Button)

• Checkboxes (java.awt.Checkbox)

• Single-line text fields (java.awt.TextField)
• Larger text display and editing areas

(java.awt.TextArea)

• Labels (java.awt.Label)

• Lists (java.awt.List)

• Pop-up lists of choices (java.awt.Choice)

• Sliders and scrollbars (java.awt.Scrollbar)

• Drawing areas (java.awt.Canvas)

• Menus (java.awt.Menu, java.awt.MenuItem,

java.awt.CheckboxMenuItem)

• Containers (java.awt.Panel, java.awt.Window and its
subclasses)

Yogidham, kalawad road, RAJKOT 248

Atmiya Infotech

Methods for Using UI Components in Applets

Because the Applet class inherits from the AWT Container
class, it's easy to add components to applets and to use layout
managers to control the components' onscreen positions.
Here are some of the Container methods an applet can use:

add

Adds the specified Component.

remove

Removes the specified Component.

setLayout
Sets the layout manager.

Adding a Non-Editable Text Field to the Simple Applet

To make the Simple applet use a scrolling, non-editable text

field, we can use the TextField class. Here is the revised

source code . The changes are shown below.

//Importing java.awt.Graphics is no longer
necessary
//since this applet no longer implements the
paint method.

Yogidham, kalawad road, RAJKOT 249

http://www.buginword.com

Atmiya Infotech

. . .

 public void init() {

import java.awt.TextField;

 public class ScrollingSimple extends

Applet {

 //Instead of using a StringBuffer, use a
TextField:
 TextField field;

 //Create the text field and make it
uneditable.
 field = new TextField();

 field.setEditable(false);

 //Set the layout manager so that the text
field will be

 //as wide as possible.
 setLayout(new

java.awt.GridLayout(1,0));

 //Add the text field to the applet.

Yogidham, kalawad road, RAJKOT 250

Atmiya Infotech

 add(field);

 addItem("initializing... ");

 }

 . . .

 void addItem(String newWord) {

 //This used to append the string to the
StringBuffer;
 //now it appends it to the TextField.
 String t = field.getText();

 System.out.println(newWord);

 field.setText(t + newWord);

 repaint();

 }

 //The paint method is no longer necessary,
 //since the TextField repaints itself
automatically.

The revised init method creates an uneditable text field

(a TextField instance). It sets the applet's layout

Yogidham, kalawad road, RAJKOT 251

Atmiya Infotech

manager to one that makes the text field as wide as

possible and then adds the text field to the applet.

Using the APPLET Tag

You should already have seen the simplest form of the

<APPLET> tag:

The user specifies the value of a parameter using a

<PARAM> tag. The <PARAM> tags should appear just

after the <APPLET> tag for the applet they affect:

<APPLET CODE=AppletSubclass.class

WIDTH=anInt HEIGHT=anInt>

</APPLET>

This tag tells the browser to load the applet whose Applet
subclass is named AppletSubclass, displaying it in an area of
the specified width and height.

Specifying Parameters

Some applets let the user customize the applet's configuration
with parameters.

<APPLET CODE=AppletSubclass.class

WIDTH=anInt HEIGHT=anInt>

Yogidham, kalawad road, RAJKOT 252

Atmiya Infotech

<PARAM NAME=parameter1Name

VALUE=aValue>

<PARAM NAME=parameter2Name

VALUE=anotherValue>

<PARAM NAME="endImage" VALUE=10>

</APPLET>

Here's an example of the <PARAM> tag in use.

<APPLET CODE="Animator.class"

WIDTH=460 HEIGHT=160>

<PARAM NAME="imageSource"

VALUE="images/Beans">

<PARAM NAME="backgroundColor"

VALUE="0xc0c0c0">

<PARAM NAME="soundSource"

VALUE="audio">

<PARAM NAME="soundtrack"

VALUE="spacemusic.au">

<PARAM NAME="sounds"

VALUE="1.au|2.au|3.au|4.au|5.au|6.au|7.au|8

au|9.au|0.au">

<PARAM NAME="pause" VALUE=200>

Yogidham, kalawad road, RAJKOT 253

Atmiya Infotech

. . .

Note the ellipsis points (". . .") in the previous HTML
example. What did the example leave out? It omitted
alternate HTML code -- HTML code interpreted only by
browsers that don't understand the <APPLET> tag. Alternate

HTML code is any text that appears between the <APPLET>

and </APPLET> tags, after any <PARAM> tags. Java-
enabled browsers ignore alternate HTML code.

</APPLET>

Specifying Alternate HTML Code and Text

To specify alternate text to Java-enabled browsers and

other browsers that understand the <APPLET> tag, use

the ALT attribute. If the browser can't display an applet

for some reason, it can display the applet's ALT text.

We use alternate HTML code throughout the online

version of this tutorial to tell readers about the applets

they're missing. Often, the alternate HTML code

includes one or more pictures of the applet. Here's the

complete HTML code for the Animator example shown

previously:

<APPLET CODE="Animator.class"

WIDTH=460 HEIGHT=160

Yogidham, kalawad road, RAJKOT 254

Atmiya Infotech

 ALT="If you could run this applet, you'd see

some animation">

<PARAM NAME="imageSource"

VALUE="images/Beans">

<PARAM NAME="backgroundColor"

VALUE="0xc0c0c0">

<PARAM NAME="endImage" VALUE=10>

<PARAM NAME="soundSource"

VALUE="audio">

<PARAM NAME="soundtrack"

VALUE="spacemusic.au">

<PARAM NAME="sounds"

VALUE="1.au|2.au|3.au|4.au|5.au|6.au|7.au|8

au|9.au|0.au">

<PARAM NAME="pause" VALUE=200>

Your browser is completely ignoring the

<APPLET> tag!

</APPLET>

An applet that doesn't understand the <APPLET> tag ignores
everything in the previous HTML code except the line that
starts with "Your". A browser that does understand the

Yogidham, kalawad road, RAJKOT 255

Atmiya Infotech

<APPLET> tag ignores everything on that line. If the applet-

savvy browser can't run the applet, it might display the ALT
text.

Specifying the Applet Directory

By default, a browser looks for an applet's class and archive
files in the same directory as the HTML file that has the
<APPLET> tag. (If the applet's class is in a package, then
the browser uses the package name to construct a directory
path underneath the HTML file's directory.) Sometimes,
however, it's useful to put the applet's files somewhere else.
You can use the CODEBASE attribute to tell the browser in
which directory the applet's files are located:

<APPLET CODE=AppletSubclass.class

CODEBASE=aURL

 WIDTH=anInt HEIGHT=anInt>

</APPLET>

If aURL is a relative URL, then it's interpreted relative to the
HTML document's location. By making aURL an absolute
URL, you can load an applet from just about anywhere --
even from another HTTP server.

Yogidham, kalawad road, RAJKOT 256

Atmiya Infotech

This tutorial uses

CODEBASE="someDirectory/" frequently,

since we group the

The following figure shows the location of the class file,
relative to the HTML file, when CODEBASE is set to

"example/".

The next figure shows where the applet class can be if you
specify an absolute URL for the value of CODEBASE.

<APPLET> Tag Attributes

When you build <APPLET> tags, keep in mind that words
such as APPLET and CODEBASE can be typed in either as
shown or in any mixture of uppercase and lowercase. Bold
font indicates something you should type in exactly as shown
(except that letters don't need to be uppercase). Italic font
indicates that you must substitute a value for the word in

Yogidham, kalawad road, RAJKOT 257

Atmiya Infotech

italics. Square brackets ([and]) indicate that the contents of
the brackets are optional.

< APPLET

 [CODEBASE = codebaseURL]

 CODE = appletFile

 [ALT = alternateText]
 [NAME = appletInstanceName]

 WIDTH = pixels

 HEIGHT = pixels

 [ALIGN = alignment]
 [VSPACE = pixels]

 [HSPACE = pixels]

>

[< PARAM NAME = appletParameter1

VALUE = value >]

[< PARAM NAME = appletParameter2

VALUE = value >]

. . .

[alternateHTML]

</APPLET>
CODEBASE = codebaseURL
This optional attribute specifies the base URL of the applet --
the directory or folder that contains the applet's code. If this
attribute is not specified, then the document's URL is used.
CODE = appletFile

Yogidham, kalawad road, RAJKOT 258

Atmiya Infotech

This required attribute gives the name of the file that contains
the applet's compiled Applet subclass. This file is relative to
the base URL of the applet. It cannot be absolute.
ALT = alternateText
This optional attribute specifies any text that should be
displayed if the browser understands the APPLET tag but
can't run Java applets.
NAME = appletInstanceName
This optional attribute specifies a name for the applet
instance, which makes it possible for applets on the same
page to find (and communicate with) each other.
WIDTH = pixels
HEIGHT = pixels
These required attributes give the initial width and height (in
pixels) of the applet display area, not counting any windows
or dialogs that the applet brings up.
ALIGN = alignment
This optional attribute specifies the alignment of the applet.
The possible values of this attribute are the same (and have
the same effects) as those for the IMG tag: left, right, top,
texttop, middle, absmiddle, baseline, bottom, absbottom.
VSPACE = pixels
HSPACE = pixels
These optional attributes specify the number of pixels above
and below the applet (VSPACE) and on each side of the
applet (HSPACE). They're treated the same way as the IMG
tag's VSPACE and HSPACE attributes.
< PARAM NAME = appletParameter1 VALUE = value >
<PARAM> tags are the only way to specify applet-specific
parameters. Applets read user-specified values for parameters
with the getParameter() method. See Defining and Using

Applet Parameters for information about the getParameter()
method.
alternateHTML

Yogidham, kalawad road, RAJKOT 259

Atmiya Infotech

If the HTML page containing this <APPLET> tag is viewed
by a browser that doesn't understand the <APPLET> tag,
then the browser will ignore the <APPLET> and <PARAM>
tags, instead interpreting any other HTML code between the
<APPLET> and </APPLET> tags. Java-compatible browsers
ignore this extra HTML code.

Security Restriction

What Applets Can and Can't Do

Following is an overview of both the restrictions applets face
and the special capabilities they have.

Every browser implements security policies to keep applets
from compromising system security. This section describes
the security policies that current browsers adhere to.
However, the implementation of the security policies differs
from browser to browser. Also, security policies are subject
to change. For example, if a browser is developed for use
only in trusted environments, then its security policies will
likely be much more lass than those described here.

Current browsers impose the following restrictions on

any applet that is loaded over the network:

• An applet cannot load libraries or define native
methods.

• It cannot ordinarily read or write files on the host that's
executing it.

• It cannot make network connections except to the host
that it came from.

Yogidham, kalawad road, RAJKOT 260

Atmiya Infotech

• It cannot start any program on the host that's executing
it.

• It cannot read certain system properties.
• Windows that an applet brings up look different than

windows that an application brings up.

Each browser has a SecurityManager object that

implements its security policies. When a SecurityManager

detects a violation, it throws a SecurityException. Your

applet can catch this SecurityException and react
appropriately.

Applet Capabilities

The java.applet package provides an API that gives applets
some capabilities that applications don't have. For example,
applets can play sounds, which other programs can't do yet.

Here are some other things that current browers and

other applet viewers let applets do:

• Applets can usually make network connections to the
host they came from.

• Applets running within a Web browser can easily cause
HTML documents to be displayed.

• Applets can invoke public methods of other applets on
the same page.

• Applets that are loaded from the local file system (from
a directory in the user's CLASSPATH) have none of
the restrictions that applets loaded over the network do.

Yogidham, kalawad road, RAJKOT 261

Atmiya Infotech

Network Programming

The Internet Protocol Suite

The java.net package provides a set of classes that support network
programming using the communication protocols employed by the
Internet. These protocols are known as the Internet protocol suite and
include the Internet Protocol (IP), the Transport Control Protocol
(TCP), and the User Datagram Protocol (UDP) as well as other, less-
prominent supporting protocols.

The Internet

Asking the question What is the Internet? may bring about a

heated discussion in some circles. In this book, the Internet is

defined as the collection of all computers that are able to

communicate, using the Internet protocol suite. This definition

includes all computers to which you can directly (or indirectly

through a firewall) send Internet Protocol packets.

Computers on the Internet communicate by exchanging packets

of data, known as Internet Protocol, or IP, packets. IP is the

network protocol used to send information from one computer to

another over the Internet. All computers on the Internet (by our

definition in this book) communicate using IP. IP moves

information contained in IP packets. The IP packets are routed via

special routing algorithms from a source computer that sends the

packets to a destination computer that receives them. The routing

Yogidham, kalawad road, RAJKOT 262

Atmiya Infotech

algorithms figure out the best way to send the packets from

source to destination.

In order for IP to send packets from a source computer to a

destination computer, it must have some way of identifying these

computers. All computers on the Internet are identified using one

or more IP addresses. A computer may have more than one IP

address if it has more than one interface to computers that are

connected to the Internet.

IP addresses are 32-bit numbers. They may be written in decimal,

hexadecimal, or other formats, but the most common format is

dotted decimal notation. This format breaks the 32-bit address up

into four bytes and writes each byte of the address as unsigned

decimal integers separated by dots. For example,

204.212.153.193.

IP addresses are not easy to remember, even using dotted

decimal notation. The Internet has adopted a mechanism,

referred to as the Domain Name System (DNS), whereby

computer names can be associated with IP addresses. These

computer names are referred to as domain names. The DNS has

several rules that determine how domain names are constructed

and how they relate to one another. For the purposes of this

chapter, it is sufficient to know that domain names are computer

names and that they are mapped to IP addresses.

Yogidham, kalawad road, RAJKOT 263

Atmiya Infotech

The mapping of domain names to IP addresses is maintained by

a system of domain name servers. These servers are able to look

up the IP address corresponding to a domain name. They also

provide the capability to look up the domain name associated with

a particular IP address, if one exists.

IP enables communication between computers on the Internet by

routing data from a source computer to a destination computer.

However, computer-to-computer communication only solves half

of the network communication problem. In order for an application

program, such as a mail program, to communicate with another

application, such as a mail server, there needs to be a way to

send data to specific programs within a computer.

Ports are used to enable communication between programs. A

port is an address within a computer. Port addresses are 16-bit

addresses that are usually associated with a particular application

protocol. An application server, such as a Web server or an FTP

server, listens on a particular port for service requests, performs

whatever service is requested of it, and returns information to the

port used by the application program requesting the service.

Popular Internet application protocols are associated with well-
known ports. The server programs implementing these protocols

listen on these ports for service requests. The well-known ports

for some common Internet application protocols are

Yogidham, kalawad road, RAJKOT 264

Atmiya Infotech

Port Protocol

21 File Transfer Protocol
23 Telnet Protocol
25 Simple Mail Transfer Protocol
80 Hypertext Transfer Protocol

The well-known ports are used to standardize the location of

Internet services.

Connection-Oriented Versus Connectionless Communication

Transport protocols are used to deliver information from one port

to another and thereby enable communication between

application programs. They use either a connection-oriented or

connectionless method of communication. TCP is a connection-

oriented protocol and UDP is a connectionless transport protocol.

The TCP connection-oriented protocol establishes a

communication link between a source port/IP address and a

destination port/IP address. The ports are bound together via this

link until the connection is terminated and the link is broken. An

example of a connection-oriented protocol is a telephone

conversation. A telephone connection is established,

communication takes place, and then the connection is

terminated.

The reliability of the communication between the source and

destination programs is ensured through error-detection and

Yogidham, kalawad road, RAJKOT 265

Atmiya Infotech

error-correction mechanisms that are implemented within TCP.

TCP implements the connection as a stream of bytes from source

to destination. This feature allows the use of the stream I/O

classes provided by java.io.

The UDP connectionless protocol differs from the TCP

connection-oriented protocol in that it does not establish a link for

the duration of the connection. An example of a connectionless

protocol is postal mail. To mail something, you just write down a

destination address (and an optional return address) on the

envelope of the item you're sending and drop it in a mailbox.

When using UDP, an application program writes the destination

port and IP address on a datagram and then sends the datagram

to its destination. UDP is less reliable than TCP because there

are no delivery-assurance or error-detection and -correction

mechanisms built into the protocol.

Application protocols such as FTP, SMTP, and HTTP use TCP to

provide reliable, stream-based communication between client and

server programs. Other protocols, such as the Time Protocol, use

UDP because speed of delivery is more important than end-to-

end reliability.

Sockets and Client/Server Communication

Clients and servers establish connections and communicate via

sockets. Connections are communication links that are created

Yogidham, kalawad road, RAJKOT 266

Atmiya Infotech

over the Internet using TCP. Some client/server applications are

also built around the connectionless UDP. These applications

also use sockets to communicate.

Sockets are the endpoints of Internet communication. Clients

create client sockets and connect them to server sockets. Sockets

are associated with a host address and a port address. The host

address is the IP address of the host where the client or server

program is located. The port address is the communication port

used by the client or server program. Server programs use the

well-known port number associated with their application protocol.

A client communicates with a server by establishing a connection

to the socket of the server. The client and server then exchange

data over the connection. Connection-oriented communication is

more reliable than connectionless communication because the

underlying TCP provides message-acknowledgment, error-

detection, and error-recovery services.

When a connectionless protocol is used, the client and server

communicate by sending datagrams to each other's socket. The

UDP is used for connectionless protocols. It does not support

reliable communication like TCP.

Yogidham, kalawad road, RAJKOT 267

Atmiya Infotech

Overview of java.net

The java.net package provides several classes that support

socket-based client/server communication.

The InetAddress class encapsulates Internet IP addresses and

supports conversion between dotted decimal addresses and

hostnames. The Socket, ServerSocket, and DatagramSocket

classes implement client and server sockets for connection-

oriented and connectionless communication. The URL,

URLConnection, and URLEncoder classes implement high-level

browser-server Web connections.

The InetAddress Class

The InetAddress class encapsulates Internet addresses. It

supports both numeric IP addresses and hostnames.

The InetAddress class has no public variables or constructors. It

provides eight access methods that support common operations

on Internet addresses. Three of these methods are static.

The getLocalHost() method is a static method that returns an

InetAddress object representing the Internet address of the local

host computer. The static getByName() method returns an

Yogidham, kalawad road, RAJKOT 268

Atmiya Infotech

InetAddress object for a specified host. The static getAllByName()

method returns an array of all Internet addresses associated with

a particular host.

The getAddress() method gets the numeric IP address of the host

identified by the InetAddress object, and the getHostName()

method gets its domain name.

The equals(), hashCode(), and toString() methods override those

of the Object class.

The NSLookupApp program illustrates the use of the InetAddress

class. It takes a hostname as a parameter and identifies the

primary IP address associated with that host.

import java.net.*;

public class NSLookupApp {

 public static void main(String args[]) {

 try {

 if(args.length!=1){

 System.out.println("Usage: java NSLookupApp

hostName");

 return;

 }

 InetAddress host = InetAddress.getByName(args[0]);

 System.out.println("Host name: "+

Yogidham, kalawad road, RAJKOT 269

Atmiya Infotech

host.getHostName());

 System.out.print("IP address: "+

host.getHostAddress());

 }catch(UnknownHostException ex) {

 System.out.println("Unknown host");

 return;

 }

 }

}

This code example uses NSLookupApp to look up the primary IP

address associated with the host.

The Socket Class

The Socket class implements client connection-based sockets.

These sockets are used to develop applications that utilize

services provided by connection-oriented server applications.

The Socket class provides four constructors that create sockets

and connect them to a destination host and port. The access

methods are used to access the I/O streams and connection

parameters associated with a connected socket.

The getInetAddress() and getPort() methods get the IP address of

the destination host and the destination host port number to which

the socket is connected. The getLocalPort() method returns the

Yogidham, kalawad road, RAJKOT 270

Atmiya Infotech

source host local port number associated with the socket. The

getInputStream() and getOutputStream() methods are used to

access the input and output streams associated with a socket.

The close() method is used to close a socket.

The setSocketImplFactory() class method is used to switch from

the default Java socket implementation to a custom socket

implementation.

The following program is used to talk to a particular port on a

given host on a line-by-line basis. It provides the option of sending

a line to the specified port, receiving a line from the other host, or

terminating the connection.

/*Client*/

import java.net.*;

import java.io.*;

public class Client

{

 public static void main(String args[]) {

 Socket socket;

 try {

 DataInputStream input;

 PrintStream output;

Yogidham, kalawad road, RAJKOT 271

Atmiya Infotech

 socket = new Socket("localhost", 10000);

 while(true) {

 try {

 String tmp;

 DataInputStream user_input = new

DataInputStream(System.in);

 input = new DataInputStream(socket.getInputStream());

 output = new PrintStream(socket.getOutputStream());

 tmp = user_input.readLine();

 output.println(tmp);

 System.out.println(tmp);

 tmp = input.readLine();

 System.out.println(tmp);

 }

 catch(java.io.IOException e) {

 e.printStackTrace();

 return;

 }

 }

 }

 catch(java.io.IOException e) {

Yogidham, kalawad road, RAJKOT 272

Atmiya Infotech

 e.printStackTrace();

 }

 }

}

The ServerSocket Class

The ServerSocket class implements a TCP server socket. It

provides two constructors that specify the port to which the server

socket is to listen for incoming connection requests. An optional

count parameter may be supplied to specify the amount of time

that the socket should listen for an incoming connection.

The accept() method is used to cause the server socket to listen

and wait until an incoming connection is established. It returns an

object of class Socket once a connection is made. This Socket

object is then used to carry out a service for a single client. The

getInetAddress() method returns the address of the host to which

the socket is connected. The getLocalPort() method returns the

port on which the server socket listens for an incoming

connection. The toString() method returns the socket's address

and port number as a string in preparation for printing.

The close() method closes the server socket.

The static setSocketFactory() method is used to change the

default ServerSocket implementation to a custom implementation.

Yogidham, kalawad road, RAJKOT 273

Atmiya Infotech

/*Server*/

import java.net.*;

import java.io.*;

public class Server implements Runnable

{

 private Socket client;

 public Server(Socket socket)

 {

 Thread thread;

 client = socket;

 thread = new Thread(this);

 thread.start();

 }

 public static void main(String args[])

 {

 ServerSocket listen_socket;

 try

 {

 listen_socket = new ServerSocket(10000);

Yogidham, kalawad road, RAJKOT 274

Atmiya Infotech

 }

 catch(java.io.IOException e)

 {

 System.err.println("Failed to create listen socket.");

 e.printStackTrace();

 System.exit(-1);

 return;

 }

 while(true)

 {

 Socket socket;

 try

 {

 socket = listen_socket.accept();

 new Server(socket);

 }

 catch(java.io.IOException e)

 {

 e.printStackTrace();

 }

 }

 }

 public void run()

Yogidham, kalawad road, RAJKOT 275

Atmiya Infotech

 {

 DataInputStream input;

 PrintStream output;

 String data;

 try

 {

 input = new

DataInputStream(client.getInputStream());

 output = new

PrintStream(client.getOutputStream());

 }

 catch(java.io.IOException e)

 {

 e.printStackTrace();

 return;

 }

 while(true)

 {

 try

 {

 data = input.readLine();

 output.println("Received (" + data.length() +

"): " + data);

Yogidham, kalawad road, RAJKOT 276

Atmiya Infotech

 System.out.println(data);

 }

 catch(java.io.IOException e)

 {

 break;

 }

 }

 }
}

The DatagramSocket Class

The DatagramSocket class is used to implement client and server

sockets using the UDP protocol. UDP is a connectionless protocol

that allows application programs (both clients and servers) to

exchange information using chunks of data known as datagrams.

DatagramSocket provides two constructors. The default

constructor creates a datagram socket for use by client

applications. No port number is specified. The second constructor

allows a datagram socket to be created using a specified port.

This constructor is typically used with server applications.

The send() and receive() methods are used to send and receive

datagrams using the socket. The datagrams are objects of class

DatagramPacket. The getLocalPort() method returns the local

Yogidham, kalawad road, RAJKOT 277

Atmiya Infotech

port used in the socket. The close() method closes this socket,

and the finalize() method performs additional socket-termination

processing when the socket is deallocated during garbage

collection.

The DatagramPacket Class

The DatagramPacket class encapsulates the actual datagrams

that are sent and received using objects of class

DatagramSocket. Two different constructors are provided: one for

datagrams that are received from a datagram socket and one for

creating datagrams that are sent over a datagram socket. The

arguments to the received datagram constructor are a byte array

used as a buffer for the received data and an integer that

identifies the number of bytes received and stored in the buffer.

The sending datagram constructor adds two additional

parameters: the IP address and port where the datagram is to be

sent.

Four access methods are provided. The getAddress() and

getPort() methods are used to read the destination IP address

and port of the datagram. The getLength() and getData() methods

are used to get the number of bytes of data contained in the

datagram and to read the data into a byte array buffer.

/*DatagramSender*/

Yogidham, kalawad road, RAJKOT 278

Atmiya Infotech

import java.net.*;

class DatagramSender {

 public static void main(String args[]) {

 try {

 // Create destination Internet address

 InetAddress ia =

 InetAddress.getByName(args[0]);

 // Obtain destination port

 int port = Integer.parseInt(args[1]);

 // Create a datagram socket

 DatagramSocket ds = new DatagramSocket();

 // Create a datagram packet

 byte buffer[] = args[2].getBytes();

 DatagramPacket dp =

 new DatagramPacket(buffer, buffer.length,

 ia, port);

Yogidham, kalawad road, RAJKOT 279

Atmiya Infotech

 // Send the datagram packet

 ds.send(dp);

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

}

/*DatagramReceiver */

import java.net.*;

class DatagramReceiver {

 private final static int BUFSIZE = 20;

 public static void main(String args[]) {

 try {

 // Obtain port

 int port = Integer.parseInt(args[0]);

Yogidham, kalawad road, RAJKOT 280

Atmiya Infotech

 // Create a DatagramSocket object for the port

 DatagramSocket ds = new DatagramSocket(port);

 // Create a buffer to hold incoming data

 byte buffer[] = new byte[BUFSIZE];

 // Create infinite loop

 while(true) {

 // Create a datagram packet

 DatagramPacket dp =

 new DatagramPacket(buffer, buffer.length);

 // Receive data

 ds.receive(dp);

 // Get data from the datagram packet

 String str = new String(dp.getData());

 // Display the data

 System.out.println(str);

 }

 }

Yogidham, kalawad road, RAJKOT 281

Atmiya Infotech

 catch(Exception e) {

 e.printStackTrace();

 }

 }

}

URL

The URL class encapsulates Web objects by their URL address.

It provides a set of constructors that allow URL objects to be

easily constructed and a set of access methods that allow high-

level read and write operations to be performed using URLs.

The URL access methods provide a full set of URL processing

capabilities. The getProtocol(), getHost(), getPort(), getFile(), and

getRef() methods allow the individual address components of the

URL to be determined. The getContent() and openStream()

methods allow reading of the Web object pointed to by the URL.

The toExternalForm() and toString() methods enable URLs to be

converted into strings to support display and printing. The

equals() method compares URLs, and the sameFile() method

compares the Web objects pointed to by the URLs.

The GetURLApp program illustrates the power provided by the

URL class. This small program implements a primitive Web

browser. Just run the program with the name of an URL and it

Yogidham, kalawad road, RAJKOT 282

Atmiya Infotech

makes a connection to the destination Web server and downloads

the referenced document.

import java.net.*;

import java.io.*;

public class GetURLApp {

 public static void main(String args[]){

 try{

 if(args.length!=1) error("Usage: java GetURLApp

URL");

 System.out.println("Fetching URL: "+args[0]);

 URL url = new URL(args[0]);

 DataInputStream inStream = new

DataInputStream(url.openStream());

 String line;

 while ((line = inStream.readLine())!= null){

 System.out.println(line);

 }

 inStream.close();

 }catch (MalformedURLException ex){

 error("Bad URL");

 }catch (IOException ex){

 error("IOException occurred.");

Yogidham, kalawad road, RAJKOT 283

Atmiya Infotech

 }

 }

 public static void error(String s){

 System.out.println(s);

 System.exit(1);

 }

}

”Be fluent at your thoughts, express it, anyway…”

- Bhavin Rawal

Yogidham, kalawad road, RAJKOT 284

	JAVA
	“Aim at the stars, even if you fall, you will fal
	-By Mr. Bhavin Rawal
	JAVA
	Introduction
	History
	Characteristics
	OOP
	A software design method that models the characteristics of abstract or real objects using classes and objects.

	Simple
	Portable
	Robust
	Multithreaded
	Architecture-Neutral
	Compiled – Interpreted
	High Performance
	Distributed
	Dynamic

	Java Virtual Machine

	Language Fundamental
	First Program
	Compiling a program

	Compile the Source File.
	Running a program

	In the same directory, enter at the prompt:
	Now you should see:
	Command line argument
	Accepting user inputs

	Datatypes
	Integer Types
	Byte
	Short
	Int
	Long

	Floating-Point Types
	Float
	double

	Characters
	Boolean
	Literals

	Variables
	Declaration
	Dynamic Initialization
	Scope
	Automatic Type Promotion in Expression

	Operators
	Arithmetic
	Relational and Logical
	Assignment
	Conditional / Ternary
	Increment – Decrement
	Bitwise Shift
	Operator Precedence

	Control Statements
	If … else
	Switch … case
	Loops
	While
	do … while
	For

	Nested Loops and Labeled Loops
	Jump Statements
	Break
	Continue
	Return

	Arrays
	Array Allocation
	Alternate Array Declaration Syntax
	One-Dimensional Array
	Multi-Dimensional Array

	Implementing Classes
	Basics
	General Form of a Class
	Creating Classes & their Objects
	Object

	Assigning Object Reference Variable
	Methods
	Constructors
	The Alien class.

	The this keyword
	Garbage Collection
	Overloading
	Understanding final & static
	Nested / Inner Classes

	Inheritance
	Basics
	extends keyword declares that your class is a subclass of another
	Modifiers
	The Default Access Modifier
	The public Access Modifier
	The protected Access Modifier
	The private Access Modifier
	The static Modifier
	The final Modifier
	The synchronized Modifier
	The native Modifier

	The super keyword
	Constructor’s hierarchy
	Overriding
	Methods
	Calling the Overridden Method
	Variables

	Abstract Classes
	Abstract Method
	Using final and Static

	Packages & Interfaces
	Packages
	Defining a package

	Interfaces
	Basics
	Interface References
	Applying Interfaces
	Interface variables
	Interface Inheritance

	Exception Handling
	Basics
	Exception & Error Classes
	Class Throwable
	Errors
	Exceptions
	Checked Exceptions

	Using try … catch
	Multiple Catch Statements
	Throw, Throws & Finally Statements
	The finally Block

	Java’s Built in Exception

	Java.lang.*
	Interfaces
	Cloneable
	Comparable
	Runnable

	Classes
	Object
	Number
	Wrapper Classes
	Byte and Short
	Integer and Long
	The Integer and Long classes wrap the int and long primitive types. They provide the MIN_VALUE and MAX_VALUE constants, as well as a number of type and class testing and conversion methods. The parseInt() and parseLong() methods are used to parse Str
	Float and Double
	Character
	Boolean

	Class
	Math
	String and StringBuffer
	String Literals
	String Constructors

	String Access Methods
	String Access Methods
	Character and Substring Methods
	String Comparison and Test Methods
	Copy, Concatenation, and Replace Methods

	String Conversion and Generation
	System
	Thread
	ThreadGroup
	Throwable
	The Error Class
	The Exception Class

	Java.util.*
	Basics
	Interfaces
	Collection
	List
	Set
	SortedSet
	Map
	SortedMap
	Enumeration and Iterator

	Classes
	All Implementing Classes of Collection & Map
	Vector
	Table The variables and methods available in the Vector interface.
	Stack
	Listing Stack1.java: A sample Stack program.
	Table 11.12. The methods available in the Stack interface.
	Dictionary
	Table The methods available in the Dictionary interface.
	Hashtable
	Table The methods available in the Hashtable interface.

	Properties
	Table The variables and methods available in the Properties interface.

	StringTokenizer
	A sample StringTokenizer program.
	Table The methods available in the StringTokenizer interface.

	Date
	Table Useable methods available in the Date interface.

	Calendar
	Table 11.3. Methods in the Calendar class.

	Random
	Table :: The methods available in the Random interface.

	Multithreading
	Basics
	Customizing a Thread's run Method
	Subclassing Thread and Overriding run
	Implementing the Runnable Interface
	Deciding to Use the Runnable Interface

	The Life Cycle of a Thread
	Creating a Thread
	Starting a Thread
	Making a Thread Not Runnable
	Stopping a Thread
	The isAlive Method

	Understanding Thread Priority
	Time-Slicing
	Summary

	Synchronizing Threads
	The Producer/Consumer Example
	The Main Program
	The Output

	Locking an Object
	Reaquiring a Lock
	Using the notifyAll and wait Methods
	Avoiding Starvation and Deadlock
	Grouping Threads
	The Default Thread Group
	Creating a Thread Explicitly in a Group
	Getting a Thread's Group
	The ThreadGroup Class
	Collection Management Methods
	Methods that Operate on the Group
	Methods that Operate on All Threads within a Group
	Access Restriction Methods

	Summary

	IO
	Basics
	Character Streams
	Byte Streams

	Understanding the I/O Superclasses
	Using the Streams
	I/O Streams

	Understanding the Implementation of various IO classes
	FileInputStream, FileOutputStream, FileReader, FileWriter
	ByteArrayInputStream, ByteArrayOutputStream
	InputStreamReader, OutputStreamWriter
	BufferedInputStream, BufferedOutputStream, BufferedReader, BufferedWriter
	DataInputStream, DataOutputStream
	SequenceInputStream
	CharArrayReader, CharArrayWriter
	File, RandomAccessFile
	PrintWriter
	PushbackInputStream, PushbackReader
	ObjectInputStream, ObjectOutputStream

	AWT Fundamentals
	Graphical User Interfaces
	AWT Basics
	Applications versus Applets
	Basic GUI Logic
	A Simple Example
	AWTEvent
	Low-level Events
	Semantic Events

	AWT Components
	Buttons
	Canvas
	Checkbox
	CheckboxGroup

	Event Sources
	Low-Level Events
	Semantic Events

	Containers
	Common Container Methods
	ScrollPane

	Event Handling
	Events

	Event Listeners
	Summary of Listener interfaces and their methods
	Event Adapters
	Adapters Example
	Applications and Menus
	GUI-based Applications
	Applications: Dialog Boxes
	Applications: Menus
	Menu Shortcuts
	Pop-up Menus

	APPLET
	Overview of Applets
	A Simple Applet
	Loading the Applet
	Leaving and Returning to the Applet's Page
	Reloading the Applet
	Quitting the Browser
	Summary

	Methods for Milestones
	Methods for Drawing and Event Handling
	Methods for Adding UI Components
	Pre-Made UI Components
	Methods for Using UI Components in Applets
	Adding a Non-Editable Text Field to the Simple Applet

	Using the APPLET Tag
	Specifying Parameters
	Specifying Alternate HTML Code and Text
	Specifying the Applet Directory
	<APPLET> Tag Attributes

	What Applets Can and Can't Do
	Security Restriction
	Applet Capabilities

	Network Programming
	The Internet Protocol Suite
	The Internet
	Connection-Oriented Versus Connectionless Communication

	Sockets and Client/Server Communication
	Overview of java.net
	The InetAddress Class
	The Socket Class
	The ServerSocket Class
	The DatagramSocket Class
	The DatagramPacket Class

