

Atmiya Infotech

“Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 1

Unix

Operating
System

By Chetan Bhojani

Atmiya Infotech

BCA SEM-IV

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 2

Atmiya Infotech

Operating System

 Unix

Syllabus of UNIX/LINUX

Sr. No. Topic Subtopics

1

Starting with Unix Login, logout, passwd, who,
whoami
mkdir, cd, rm, pwd
cat, cp, mv, more

2

Understanding process and multi-user
environment

ps, kill
banner, cal, date
chmod, chown, umask
write, mesg, wall, mail

3

Text editing with vi vi modes and switching in vi
Cursor movements
Screen control
Entering and editing text (cut, copy
paste)
Pattern matching

4 Advance tools Tee, head, tail
Grep, egerp, fgrep

5 Working with the text files Sort , uniq ,cmp,comm.,diff
Cut,paste,join,tr

6.

Shell programming Writing shell scripts,interactive shell
scripts
Executing shell scripts using sh
command
Setting of variable
Arithmetic of shell using expr and
let statement
Decision statement-
if,else,elif,test,case
Loops-for,while,until,break,continue
Sleep,wait,null
Positional parameters($1,$#,$*,$?)

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 3

Atmiya Infotech

Syllabus of UNIX/LINUX ... 3
Features of Unix ... 8
What Is a Command? ... 10

The Types of UNIX Files .. 10
File and Directory Names.. 11

Chapter: 1 Starting with Unix/Linux 12
Login and Logout... 12
passwd command .. 12
who command... 13

who am i.. 13
mkdir... 14
pwd command... 14
cd command ... 15
rmdir command ... 15
ls command .. 16

ls command with options... 16
cat command: ... 18

Using cat to create a file.. 19
cp command ... 19
rm command:.. 20
mv command: ... 20
more command:... 20

Chapter: 2 Understanding process and multi-user 22
Environment.. 22

ps command: .. 22
Or Unix Processes:... 22

Parent and child process:.. 22
Ps command: .. 22

banner : ... 24
cal :... 24
date: ... 24
chmod: .. 25
chown: .. 25
umask: .. 26
Pr: .. 27
lpstat:.. 28
Telnet: ... 28
lp command: ... 28
ln command.. 29

Hard and Symbolic Links ... 32
Chown: ... 33
lpstat:.. 33

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 4

Atmiya Infotech

UNIX communication .. 34
news:.. 34
mesg: ... 34
write: .. 34
talk: .. 34
mail: ... 35
wall: ... 35

Chapter: 3 Text editing with vi ... 36
VI EDITOR... 36
Input mode ... 36

Insertion of text... 37
Append ... 37
Opening a new line with o ... 38
Replacing text... 38
Save and quit.. 39
Repeating Text.. 40

Command mode .. 40
Deletion with x .. 40
Cursor movement .. 40
paging and scrolling .. 41
Moving between lines ... 41
Pattern Search .. 41

Chapter: 4 Advance tools.. 43
tee: ... 43
head:... 43
tail: ... 44
grep: ... 44
egrep: Extending grep... 45
fgrep: .. 46

Chapter: 5 Working with the text files.................................... 47
Sort:.. 47
uniq: ... 47
cmp: comparing two files... 48
comm: ... 48
diff: ... 49
Cut.. 49
Paste... 49

Chapter: 6 Shell Programming .. 50
Introduction .. 50

The Kernel and the Shell ... 50
The Functions of a Shell ... 52

Shell programming .. 54
Variables in Unix: ... 55
read: Interactive Scripts .. 57

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 5

Atmiya Infotech

COMMAND LINE ARGUMENTS—POSITIONAL PARAMETERS............ 58
The Parameter $? .. 58

THE LOGICAL OPERATORS && AND | |—CONDITIONAL EXECUTION . 59
THE if CONDITIONAL .. 60
THE case CONDITIONAL.. 61
The until Loop.. 62
Sleep, wait and null commands: .. 63

Shell Scripts: ... 64
Shree Gyanyagna College of Pure and Applied Science........... 65
Operating System and Unix .. 65

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 6

Atmiya Infotech

The beginning of Unix operating System

Unix had a modest beginning at AT&T Bell Laboratories in 1969. That was when AT&T
withdrew its team from the MULTICS project, and some of them began work on the
development of a computing environment to pursue “programming research”. Ken
Thompson and Dennis Ritchie then designed and built a small multi-tasking system
supporting two users. This new system had an elegant file system, a command
interpreter and a set of utilities. A member of the team, Brian Karnighan, presumably
having MULTICS in mine, suggested the name UNICS (Then jokingly reared to as the
Uniplexed Information And Computer System) for this operating system. In 1970, UNICS
finally became the name by which it is known today, UNIX.

Operation systems have always i.e. till UNIX came of the seen, been design with the particular
machine in mind. Similarly computers were also built for a specific operation system. They were
invariably returned in assembler, which understood and access hardware well, and had good
speed. Thomson and Ritchie wanted a general operation system running on more type of
hardware. That implied use of high-level language with consequent sacrifice of speed.

Originally written in assembler, UNIX was rewritten in 1973 in C, which was principally authored
by Ritchie. Writing the system in C made it possible to maintain it and move it different hardware
platforms.
As every vendor modified and enhanced UNIX to create its own version, the orignal UNIX lost its
identity as a separate product. All these versions had little resemblance with one another, and
each vendor claimed that its product was “true” UNIX. The BSD releases were greatly from the
System V releases, and the incompatibilities sturdily mounted while standards were being
developed as to what a product had to satisfy to be called UNIX, AT&T took it upon themselves to
rework mainly the BSD product, and ultimately unify the system V3.2, BSD, SunOS and XENIX
flavors into a single product. And that is how SVR4 came into being.

IBM, Helwet Packard and digital equipment corporation formed the association called Open
Software Foundation (OSF), and was formatted to create an alternative UNIX like operating
system. However they had their own brand; IBM offered AIX, HP offered HP-UX, while DEC
produced Digital UNIX. And silicon graphics offered AIRIX, system that made Jurassic park
possible. The UNIX corporative spirit has also produced Linux, the free UNIX that has captivated
the computing words in resent years.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 7

Atmiya Infotech

Features of Unix

 Unix has a number of features, mostly well and some bad, bat it’s
necessary to know at least some of them. Many of its features have been borrowed from
other operating systems, especially MULTICS. For the benefit of causal users, these
features are discussed in the forthcoming sections.

• Multi-user system:

 In Unix, the resources are actually shared between all users, be it the memory (RAM),
the CPU the chip, or the hard disk. Multi-user technology is the great socialist who has time for
everyone.

 For creating the illusory effect, the computer breaks up a unit of time into several
segments, and each user is allocated a segments. So at any point of time, the machine will be
doing the job of a single user. The moment the allocated time, the machine will be doing the job
of a single user. The moment the allocated time expires, the previous job is kept in abeyance,
and the next user’s job is taken up. This process goes on till the clock has turned full circle, and
the first user’s job is taken up once again. This is the kernel does several times in one second,
and keeps all ignorant and happy.

• Multitasking system:

 In Microsoft Window is considered to be a multitasking system where you can work with
Word and Excel concurrently without quitting either of them.

 In Unix, a single user can also run multiple tasks concurrently. You can switch jobs
between background and foreground, suspend, or even kill them. This is done by running one job
normally, and the others in the background.

• Pattern Matching:

 It is the pattern-matching feature of Unix that makes it so attractive to the end user. The *
is a special character used by the system to indicate that the expression can match a number of
filenames.

 In Unix the most advanced and useful tools also use a special expression called a regular

expression that is framed with characters from this set.

• The tool kit:

 Unix is a collection of tools, which lets you dispense with programming
work for many applications. These applications range from such mundane tasks as copying or
deleting a file, to somewhat sophisticated data base operation that cab be performed by using
the tools in combinations. The power of filters is simply mind-boggling and by combining them,
seemingly impossible takes can be made to look easy. It is most common to find a programmer
writing a program in C for which a ready-made tool is available in the UNIX tool kit.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 8

Atmiya Infotech

• Programming Facility:

 Unix was designed for a programmer. A user who isn’t a programmer will
certainly find the transition quite overwhelming.

 The Unix shell programming language has all the necessary ingredients
like control structures, loops and variables as a programming language in its own right. Though
the language is somewhat difficult to learn. The shell can be combined easily with the command
and other programs. Unix programmers seldom take recourse to any other language for text
manipulation problems.

• System calls and libraries:

 Unix is written in C. Though there are a couple of hundred handling
specialized functions, they all do that by using a handful of functions called system calls. These
calls are built into the kernel, and all library functions and utilizes are written using them.

 A user who wishes to write to a file, uses the write () system call
without going into the details of programming that achieves this write operation. These system
calls also use the same code to access devices and files. The open () system call is used to open
both a device and an ordinary file.

• Windowing systems:

 Unix had to come up with its own GUI. The X window system provides
an environment that allows you to have multiple windows where you can run applications on each
window individually. It replaces the command line with a screenful of objects in the form of
menus, icons, buttons and dialogue boxes.

 X window supports networked applications so that an applications so that
an application may run on one machine and have its display on another. Thus, the applications
must be portable across a large number of hardware that supports Unix. Much database front-
end software use the X Window system to run forms and reports.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 9

Atmiya Infotech

What Is a Command?
A UNIX command is a series of characters that you type. These characters consist of words that
are separated by white space. White space is the result of typing one or more Space or Tab keys.
The first word is the name of the command. The rest of the words are called the command's
arguments. The arguments give the command information that it might need, or specify varying
behavior of the command. To invoke a command, simply type the command name, followed by
arguments (if any), to indicate to the shell that you are done typing and are ready for the
command to be executed, press Enter.

The Types of UNIX Files

There are three types of UNIX files: regular files, directories, and device files. Regular files hold
executable programs and data. Executable programs are the commands (such as cat) that you
enter. Data is information that you store for later use. Such information can be virtually anything:
a book that you are writing, a homework assignment, or a saved spreadsheet.
Directories are files that contain other files and subdirectories, just as a filing cabinet's drawers
hold related folders. Directories help you organize your information by keeping closely related
files in the same place so you can find them later. For instance, you might save all your
spreadsheets in a single directory instead of mixing them
As in the cat example, files can also refer to computer hardware such as terminals and printers.
These device files can also refer to tape and disk drives, CD-ROM players, modems, network
interfaces, scanners, and any other piece of computer hardware. Under UNIX, even the
computer's memory is a file.
Although UNIX treats all files similarly, some require slightly unique treatment. For example, UNIX
treats directories especially in some ways. Also, because they refer directly to the computer's
hardware, device files sometimes must be treated differently from ordinary files. For instance,
most files have a definite size in bytes—the number of characters they contain. Your terminal's
keyboard is a device file, but how many characters does it hold? The question of file size doesn't
make sense in this case. Despite these differences, UNIX commands usually don't distinguish
among the various types of files.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 10

Atmiya Infotech

File and Directory Names

Unlike some operating systems, UNIX gives you great flexibility in how you name files and
directories. As previously mentioned, you cannot use the slash character because it is the
pathname separator and the name of the file tree's root directory . However, almost everything
else is legal. Filenames can contain alphabetic (both upper- and lowercase), numeric, and
punctuation characters, control characters, shell wild-card characters (such as *), and even
spaces, tabs, and newlines. However, just because you can do something doesn't mean you
should. Your life will be much simpler if you stick with upper- and lowercase alphabetic, digits,
and punctuation characters such as ., -, and _.

Note : Using shell wild-card characters such as * in filenames can cause problems. Your
shell expands such wild-card characters to match other files. Suppose that you create a filename
* that you want to display with cat, and you still have your files cowboys and prufrock. You might
think that the command cat * will do the trick, but remember that * is a shell wild card that
matches anything. Your shell expands * to match the files *, cowboys, and prufrock, so cat
displays all three. You can avoid this problem by quoting the asterisk with a backslash:

$ cat *

Filenames can be as long as 255 characters in System V Release 4 UNIX. Unlike DOS, which
uses the dot character to separate the filename from a three-character suffix, UNIX does not
attach any intrinsic significance to dot—a file named lots.of.italian.recipes is as legal as lots-of-
Italian-recipes. However, most UNIX users follow the dot-suffix conventions listed in Table Some
language compilers like cc require that their input files follow these conventions, so the table
labels these conventions as "Required" in the last column.

Table: Fileconventions.

Suffix

Program

Example

Required

.c C program files ls.c Yes

.f FORTRAN program files math.f Yes

.pl Perl program files Vsc.pl No

.h include files term.h No

.d, .dir The file is a directory recipes.d, No
 recipes.dir No
.gz A file compressed with the Vsc.gz Yes
 GNV project's gzip
.Z A compressed file term.h.Z Yes
.zip A file compressed with PKZIP book. zip Yes

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 11

Atmiya Infotech

Chapter: 1 Starting with Unix/Linux

Login and Logout

 Since the Unix and Linux are multi-user operating systems, the users are given their own
username by the system administrator.

The user has to enter the user name and password when the prompt appears on the
screen.

login: vsc <enter>

password:

 Where vsc is a user name. it is also known as userid or login name.
The string for password that you entered will not be displayed on the screen.
If you enter either the login name or password incorrectly, the system will display the following
message.

login incorrect
wait for login retry
login:

After successful login system will show $ as a prompt. If you are the system administrator and
logged in as root, it will give the prompt #

In Linux the prompt will be

[root@localhost]#

Which shows that you are logged in as root and your machine is local host.

Logout is used to signoff a system as a current user.

passwd command

 Passwd command is used to change passwords
$ passwd
old password:
New password:
Re-enter new password:

 Passwd when invoked by ordinary user ,it asks for old password. After which it
demands to enter new password twice. if you are logged on as root you can directly change the
password.

In Linux
[root@localhost]passwd vsc
changing password for vsc
new password:

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 12

Atmiya Infotech

who command

 who command gives the list of the users currently working on various terminals.
$who
vsc tty01 Dec 25 09:35
atmiya tty02 Dec 25 08:50
student tty03 Dec 25 09:45

$who –Hu

USER LINE LOGIN-TIME IDLE PID COMMENTS

vsc tty01 Dec 25 09:35 . 24
student tty02 Dec 25 09:40 0:30 25

-H is for header and –u option provides more detailed list
The idle column shows that student seems to be idling for last6 30 minutes. PID shows the
process identification number.

who am i

The who command ,when used with the arguments “am” and “I”, displays a single line

output only,i.e the login detail pertaining to the user who invoked this command.

$ who am i
vsc tty01 Dec 25 09:35

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 13

Atmiya Infotech

mkdir

mkdir command is used to create directories. The command is followed by the names of
the directories to be created.

$ mkdir virani

This command creates the directories virani

$ mkdir stud1 stud2 stud3

 This command will create three directories stud1,stud2,and stud3.

$ mkdir virani virani/sci virani/arts

 This creates three directories virani,two sub directories sci and arts under virani.The
order of specifying arguments is important; you obviously can’t create a sub directory before
creation of its parent directory.

Sometimes the system refuses to create a directory:

$mkdir maths

mkdir : can’t make directory maths

This can happen due to these reasons:

• The directory maths may already exist.
• There may be an ordinary file by that name in the current directory.
• The user doesn’t have the permission to create a directory.

pwd command

In Unix, like a file, a user also occupies a certain slot of the file system. When log in, you
are placed in a specific directory of the file system this directory is known as current directory.
You can move around one directory to another but at any point of time only one directory is
current.

At any time, you should also be able to know what your current directory is. The pwd
(present working directory) tells your current directory.

$ pwd
/usr/virani

This shows the pathname. Which shows the location of current directory with reference to
the root. Pwd tells you that you are placed in a directory virani, which has a parent directory usr,
which is directly under root.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 14

Atmiya Infotech

cd command

You can move around in the file system by using cd (change directory) command. It
changes the current directory to the directory specified as the argument.

$ pwd
/usr/virani
$ cd student
$ pwd
/usr/virani/student
$ cd..
$ pwd
/usr/virani
cd.. takes you to the parent directory of the current directory
cd when used without arguments it takes to the home directory
$ pwd
/usr/virani/student
$ cd
$pwd
/usr

rmdir command

The rmdir (remove directory) command removes directories.
$ rmdir student

This command will remove the directory student
Like mkdir, rmdir can also delete more than one directory in at a time.

$ rmdir virani virani/arts virani/sci

rmdir: virani:Directory not empty
 The directory virani cannot be deleted because it has two sub directories arts and sci

• You can not delete a unless it is empty
• You cannot remove a sub directory unless you are placed in a directory, which is

hierarchically above the one you have chosen to remove.

$cd arts

$ pwd
/user/virani/arts

$ rmdir arts

rmdir: arts: Directory does not exist

To remove the directory arts you must position you in the directory above
arts,i.e.,virani

$cd /usr/virani

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 15

Atmiya Infotech

$pwd
/usr/virani
$rmdir arts

ls command

ls command is used to obtain the list of all the files in the current directory.
$ ls
04_emp
CASH.sh
abc
alpha
calendar
dept.lst
infile
install_log
program

It provides the complete list of filenames in the current directory arranged in ASCII
collating sequence (numbers first,uppercase and then lowercase),with one filename in each
line.

ls command with options

• ls –l command:

$ ls –l
-rwxr-xr-- 1 vsc atmiya 1500 Dec 10 09:22 student
-rwxr-xr-x 1 vsc atmiya 782 Dec 10 08:21 user.lst
drwxrwxrwx 1 vsc atmiya 210 Dec 10 09:10 virani
-rwxrwxrwx 1 vsc atmiya 180 Dec 10 09:15 lab.sh

ls –l command provides long listing with permissions.

 rwx r-x r-- 1 vsc atmiya 1430 Dec 10 09:45 virani.sh

owner group other owner group file name
(permissions)

r –read permission
w – write permission
e – execute permission
rwxr-x r-- means read, write and execute permission for file owner
 read and execute for group and read permission for others

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 16

Atmiya Infotech

- indicates an ordinary file
d indicates a directory

The third column indicates the file owner here vsc is the file owner
The fourth column shows the group owner here it is atmiya.

• The –x option :Output in multiple column

-x option with ls command in Sco UNIX produces a multicolumn output .Linux does
this by default.

$ ls –x
01_page.html CASH.sh abc alpha
calendar dept.lst infile install_log
program

• The –F option: Identifying Directories and executables

To identify directories and executable files, the –F option should be used
It can be used with –x to produce the multi column output.

$ ls –Fx
01_page.html CASH.sh* abc/ alpha/
calendar* dept.lst infile install_log
program/

 * indicates that the file is executable, while / refers to a directory.

• The –a option : Showing hidden files

ls doesn’t how normally hidden file. –a option (all) list all the hidden files along
with the other files.

$ ls –axF
./ ../ .ext kshrc
.profile .rhosts 01_page.html CASH.sh*
abc/ alpha/ calendar* dept.lst
infile install_log program/

The files beginning with a . (dot) are all hidden file.

• The –r option: reversing the ort6 order
You can reverse the order of the presentation with –r (reverse) option.

$ ls –r
program
dept.lst
install_log
infile
calendar
alpha
abc
CASH.sh
01_page.html

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 17

Atmiya Infotech

ls command (cont.)
• The other options:

Option Description
-x Displays multi column output
-F Marks executables with * and directories with /
-r Sort files in reverse order
-a Shows all files including hidden files
-R Recursive listing of all files in sub directories
-l Long listing showing seven attributes of a file
-d Forces listing of a directory
-t Sort files by modification time
-u Sorts files by access time (when used with –u option)
-i Shows inode number of a file

cat command:

Displaying and creating files

cat command is used to display the contents of a file on the terminal.
$ cat user.lst
vsc
atmiya
student
lab1
lab2
account
mkt

$ cat first
This is my first Unix file
cat also accepts more than one filename as argument
$ cat user1 user2

The contents of second file are shown immediately after the first without any
header information. In this way ,cat can concatenate two files. cat is normally
used for displaying text files only. Executables ,when seen with cat ,will imply
display junk. If you have non-printing ASCII characters in your input, you can use
cat with –v option.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 18

Atmiya Infotech

Using cat to create a file

Cat is also useful for creating file. Enter the command cat ,followed by the > and
the file name.
$ cat > science
you can write your text here.

<ctrl-d>
$ _
$ cat science
 you can write your text here

cp command

copying a file

cp(copy) command copies a file or a group of files. It creates an exact image of
the file on the disk with the different name. The syntax requires atleast666 two
filenames to be specified in the command line. The first file is copied to the
second.

$ cp user1 user2

If the destination file(user2) does not exist, It will first be created before copying.
If not it will be overwritten without any warning from the system.

$ cp vi* virani
 It will copy all the files beginning with vi to directory virani
$ cp –i user1 user2
cp: overwrite user2? Y

The –i (interactive) option warns before overwriting the file.
Copying directory structure:
It is now possible to copy an entire directory structure with –r option .The
following command copies all files and sub-directories in account to main
$ cp –r account main

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 19

Atmiya Infotech

rm command:

Deleting files

Files can be deleted using rm (remove) command. It can delete more than one
file with a single instruction.
$ rm user1 user2 user3
 It deletes three files user1, user2, and user3.
You may remove all files from a directory with *
$ rm user*
Interactive deletion: --

-i option makes the command ask the user for confirmation before removing each
file
$rm –I user1
user1:? Y
A Y removes the file ,any other response leave the file undeleted.

mv command:

mv (move) is similar to the move command in dos. It has t6wo functions-
renaming a file (or directory) and moving a group of file
to a different directory. mv doesn’t create a copy of the file. No additional space
is consumed in the disk during renaming. To rename the file user1 to lab1,

$mv user1 lab1
If the destination file doesn’t exist, it will be created.

A group of files can be moved to a directory. The following command moves two
files to directory dept.
$ mv user1 user2 user3 dept
mv can also be used to rename a directory.

$ mv main dept

more command:

paging output

If a file is too large for its content to fit in one screen, it will scroll off your screen
when you view it with cat. This sometimes happen so fast that, before you hit
<ctrl-> to stop it, quite a bit of output would have scrolled off. more allows a user
to view a file, one screen at a time.

$ more virani

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 20

Atmiya Infotech

You will see the contents of virani on the screen, one page at a time. At the
bottom of the screen, you will also see the filename and percentage of the file
that has been viewed:

Virani (44%)

more also works with multiple files

$more user virani main

You first see the contents of the first file, preceded by its name. After you have
finished viewing file, more pauses with the message “virani: END (next file:
main)”, before displaying the contents of the file main
It sequentially displays all the files, pausing whenever change of file occurs.
In the middle, you can always switch to the next or previous file using..
:n next file
:p previous file

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 21

Atmiya Infotech

Chapter: 2 Understanding process and multi-user
 Environment

ps command:
Or Unix Processes:
A process is simply an instance of a running program. A process is said to be born when the
program starts execution, and remains alive as long as the program is active. After the execution
is complete, the process is said to die. It is the kernel that is ultimately responsible for the
management of these processes. It determines the time and priorities that are allotted to
processes. Typically, Hundreds and thousands of processes can run in the large system. Each
process is uniquely identified by a number called PID (process identifier) that is allotted by the
kernel when it is born.
When we login to a Unix system, a process is immediately set up by the kernel. This is a Unix
command which may be sh (Bourn shell), ksh (Korn shell) or bash (Bourn again shell). Any
command that we type in at the prompt is actually the standard input to the shell process. This
process remains alive until you logout.
To know PID of the current shell

$ echo $$
543

Parent and child process:

Every process has a parent. The parent itself is another process, and a process born
from it is said to be its child. When we run the command
$ cat students.txt
A process representing the cat command is started by the sh process(the shell)
The cat process remains alive as long as the command is active. sh is said to be the
parent of cat, while cat is said to be the child of sh.

Ps command:

Ps command is used to display the process status or attributes of the status.
Ps shows the processes associated with a user at that terminal.
$ ps
PID TTY TIME CMD
423 tty02 00:00:01 login
522 tty02 00:00:01 sh
569 tty02 00:00:01 ps

Each line shows the PID, the terminal (tty) with which the process is associated, the cumulative
processor time (TIME) that has been consumed since the process is startedand the process
name (CMD).

ps with –f option:

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 22

Atmiya Infotech

Ps –f will give the full information of the process including the process ID of the parent process.
$ ps –f

UID PID PPID C STIME TTY TIME CMD
root 334 1 0 12:21:42 tty02 00:00:01 /home/login
vsc 435 213 2 12:25:33 tty02 00:00:01 sh
vsc 455 311 11 12:50:00 tty02 00:00:00 ps –f

PPID is the process ID of the parent process. UID displays the users login name. C indicates the
amount of CPU time consumed by the process. STIME shows the time the process has started.
TIME shows the total time consumed by the process.

ps with –u option:

ps with –u option lets you know the activities of any user. If we want to use it for the user vsc
$ ps –u vsc

ps with –a option :

This option will list out the processes of all users, but it will not display the system processes

$ ps –a

ps with –e option:

This option will also list out the system processes.

$ ps –e

Running the job in background:
 A multi tasking operating system like Unix lets a user do more than one job at a time. Since there
can only one job in the foreground, the rest of the jobs have to run in the background. To run the
jobs in the background an operator & is used.

$ vi emp.txt &
370

The shell returns a number, which is the PID of the invoked command. The is returned and the
shell is ready to accept another command.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 23

Atmiya Infotech

banner :
The command creates posters by blowing up its arguments on the screen. On each line it can
display a maximum of ten characters. There are no options.
$ banner ‘virani science college’

cal :
With cal command we can print the calendars for a month or the entire year. Any calendar from
the year 1 to 9999 can be displayed with this command.
$ cal jan 1999
or
$ cal 2002

date:

The Unix system maintains an internal clock which will run even if the system is down.A battery
backup keeps the clock ticking.
date command displays the current date and time.
$date
Tue Dec 3 09:12:33 IST 2002
The command can also be used with suitable format specifier as arguments. Each format is
preceded by a + symbol,followed by the % operator and a single character describing the format.

We can print only the month using format +%m :
$ date +%m
12
or the month name
$ date +%h
Dec
we can combine them in one command:
$ date +”%h%m”
Dec 12
There are other format specifiers:
d day of the month(1 to 31)
y last two digits of the year
H, M ,and S hour, minute, and second

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 24

Atmiya Infotech

chmod:
There is an important default security feature provided by Unix in the sense that it write-protects a
file from all except the owner of the file, though by default, all users have read access. This is
easily brought out by creating a file test:
$ ls –l test
-rw-r- -r- - 1 abc group 1906 sep 5 23:39 test
 It seems that, by default, a file doesn’t have executable permission. So how does one
execute such a file? To do that, the permissions of the file need to be changed. This is done with
the chmod (change mode) command.
Syntax :-
$ chmod category operations filename(s)
In category we have four options,
 u - user
 g -group
 o -others
 a -all.
In operation we have three option,
 + - assign permission
 - - remove permission
 = - assign absolute permission
In permission we have three option,
 r - read permission -4
 w - write permission -2
 x – execute permission -1.
Eg:-
 $chmod u+x test
 $ls –l test
 -rwx r-- r--.

chown:
 ownership of file is feature often ignored by many users.
You should be knowing by now that, when file is created, the creater becomes owner
(representing the category u of chmod) of the files, and the group to which the user belongs,
becomes to group owner.
 You must remember at the outset that it is only the owner who can change the major file
attributes, like it’s permission or even ownership. A group owner or others can’t change this
attributes. However, when you copy a file owned by someone else, the ownership of the copy is
transferred to you, and you can then manipulate the attributes the copy at will. This all can done
by chown command.

$ls –l test
 -rwxr----x 1 kumar it 1906 sep 5 23:39 test
$chown guest test
 -rwxr----x 1 guest it 1906 sep 5 23:39 test

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 25

Atmiya Infotech

umask:

The default permissions inherited by all files and directory when they are created are rw-rw-rw-
(octal value 666) for regular files rwxrwxrwx (777) for directories. The default is transformed by
subtracting the user mask from it to remove one or more permission. This mask is evaluated by
using umask without argument.
umask
022
Subtracting this value from the file default yields 666 – 022=644. This represents the default
permission that you normally see when you create regular file. You should make sure that the
umask setting is proper. Two extreme instances are shown below,
 umask 666 #all permission off
 umask 222 #all read-write permission on
What permissions will be assigned to myfile and mydir by default, and how can you
control those defaults? After all, you don't want to type a chmod command every time
that you create a file or directory—it would be much more convenient if they were
created with the modes that you most often want.
Your umask (user-mask) controls default file and directory permissions. The command
umask sets a new umask for you if you're dissatisfied with the one that the system gives
you when you log in. Many users include a umask command in their login start-up files
(.profile or .login). To find out your current umask, just type umask:
$ umask

022
To change your umask, enter umask and a three digit number that specifies your new
umask. For instance, to change your umask to 027, enter the following command:
$ umask 027
UNIX determines the default directory modes by subtracting your umask from the octal
number 777. Therefore, if your umask is 027, your default directory mode is 750.
The result of this arithmetic is a mode specification like that which you give chmod, so
the effect of using the umask command is similar to using a chmod command. However,
umask never sets file execute bits, so you must turn them on with chmod, regardless of
your umask. To find the corresponding file permissions, you subtract your umask from
666. For example, if your umask is 022, your default file modes will be 644.
Table shows some typical umasks and the default file and directory modes that result
from them. Choose one that is appropriate for you and insert it into your login start-up
file. Table shows file and directory modes both numerically and symbolically, and umask
values range from the most to the least secure.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 26

Atmiya Infotech

Umask Value Default file Mode Default directory Mode
077 600 (rw———-) 700 (rwx———)
067 600 (rw———-) 710 (rwx—x—-)
066 600 (rw———-) 711 (rwx—x—x)
027 640 (rw-r——-) 750 (rwxr-xr-x)
022 644 (rw-r—r—) 755 (rwxr-xr-x)
000 666 (rw-rw-rw-) 777 (rwxrwxrwx)

Pr:
 The pr command prepares a file for printing by adding suitable header, footer and
formatted text. It has many options, and some of them is quite useful. A simple invocation of
the command is to use it with a file name as argument.

$ pr dept.lst
may 06 10:38 1997 dept.lst page 1
01:accounts:3254
02:admin:5423
…blank lines…
 pr adds one lines of margin at the top and one at the bottom. The lower portion of the
page has not been shown in the example for reasons of economy. The header shows the
date and time of last modification of the files, along with the filename and page number.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 27

Atmiya Infotech

 lpstat:
 lpstat has a number of option which can provides the
status information of printers and jobs. The –r option shows whether lpsched is running:
lpstat -r
scheduler is running.
Without options, it shows the status of all requests submitted by the user who executed the
command. With the –p option, you can obtained the list of jobs lined up for a specific printer:
lpstat –ppr1
pr1-303 test 34562 feb 9 13:24

Telnet:
 Every unix vendor offers the telnet and rlogin utilities in
its TCP/IP package to connect to a remote unix system. Telnet belongs to the DARPA command
set, while rlogin is a member of the Berkeley set of r-utilities. You must have an account on the
remote machine jill to use telnet with the machine’s IP address as argument:
 $ telnet 192.168.2.1
 login:
 you now have to enter your login name at this prompt, and then the password to gain
access to the remote machine. After you have finished, you can press <ctrl-d>, or type exit to log
out and return to your local shell.
When telnet is used without the address, the system display the telnet> prompt, from where you
can use its internal commands.
 telnet> ! ls –l *.c

lp command:

printing a file in Sco Unix

lp command is used for printing in Sco Unix ,Linux uses lpr command.

$ lp userlist
request id is laser1-140 (1 file)

The prompt is returned immediately after the job has been submitted. lp notifies
the request id,a combination of the printer name (laser1) and the job
number(140)
The file is not printed at the time of the command is invoked, but later depending
upon the number of job already lined up in the
queue. Several users can print their files in this way without conflict.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 28

Atmiya Infotech

lp accepts the above request because the administrator has defined a default
printer. If it is not, or if the I more than one printer in the system, you have to use
–d option with the printer name

$ lp –d laser1 userlist

-t option followed by the title string prints title on the first page:

$ lp –t “List of the users” userlist

You can notify the user with the mail (-m) option after the file has been printed.
you can also print multiple copies with –n option.The following command prints
three copies of userlist and mail message to the user.

$ lp –n3 –m userlist

canceling jobs

 jobs are cancelled with cancel command
$ cancel laser1 #cancels current job on printer

laser1
$ cancel laser1-140 # cancels job with request id

(laser1-140)

ln command

Links

When a file is copied ,both the original and copy occupy separate space in the
disk. Unix allows a file to have more than one name, and yet maintain a single
copy in the disk. Changes in one file will also be reflected in the other. The file is
said to have more than one links .A file can have as many names as you want to
give it, but the only thing that is common to all of them is that they all have the
same inode number.

It is similar to shortcuts in windows, but there it is not easy to know how many
shortcuts a file has. Moreover shortcuts themselves occupy a certain amount of
disk space.
In Unix you can easily know from the fourth column of the ls –l listing.
Files are linked with ln(link) command ,which takes two filenames as arguments.
The following command links account with user

$ ln account user

These links are called hard links. and have two limitations:

• You cannot have two linked files in two file systems.
• You cannot link a directory even within the same file system

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 29

Atmiya Infotech

To overcome this problem, symbolic links (also called soft links) were introduced.
Linux uses symbolic links.
You can create a symbolic link with –s option of ln.

$ ln –s note note.sym
$ ls –l
9948 -rw-r—r-- 1 vsc atmiya 44 Dec 10 12:22 note
9952 lrwxrwxrwx 1 vsc atmiya 4 Dec 10 14:10 note.sym->note

You can identify symbolic link by the character l seen in the permission field. The two

files have different sizes. The notation -> suggests that note.sym just contains the pathname for
the file note.

Unlike, hard links, symbolic links can span multiple file systems and can also link

directories. But they are removed by rm because a soft link is an ordinary file even if it points to a
directory.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 30

Atmiya Infotech

The find Command
One of the wonderful things about UNIX is its unlimited path names. A directory can
have a subdirectory that itself has a subdirectory, and so on. This provides great
flexibility in organizing your data.
Unlimited path names have a drawback, though. To perform any operation on a file that
is not in your current working directory, you must have its complete path name. Disk
files are a lot like flashlights: You store them in what seem to be perfectly logical places,
but when you need them again, you can't remember where you put them. Fortunately,
UNIX has the find command.
The find command begins at a specified point on a directory tree and searches all lower
branches for files that meet some criteria. Since find searches by path name, the search
crosses file systems, including those residing on a network, unless you specifically
instruct it otherwise. Once it finds a file, find can perform operations on it.
Suppose you have a file named urgent.todo, but you cannot remember the directory
where you stored it. You can use the find command to locate the file.
$ find / -name urgent.todo -print

/usr/home/stuff/urgent.todo
The syntax of the find command is a little different, but the remainder of this section
should clear up any questions.
The find command is different from most UNIX commands in that each of the argument
expressions following the beginning path name is considered a Boolean expression. At
any given stop along a branch, the entire expression is true—file found—if all of the
expressions are true; or false—file not found—if any one of the expressions is false. In
other words, a file is found only if all the search criteria are met. For example,
$ find /usr/home -user marsha -size +50
is true for every file beginning at /usr/home that is owned by Marsha and is larger than 50
blocks. It is not true for Marsha's files that are 50 or fewer blocks long, nor is it true for
large files owned by someone else.
An important point to remember is that expressions are evaluated from left to right. Since
the entire expression is false if any one expression is false, the program stops evaluating a
file as soon as it fails to pass a test. In the previous example, a file that is not owned by
Marsha is not evaluated for its size. If the order of the expressions is reversed, each file is
evaluated first for size, and then for ownership.
Another unusual thing about the find command is that it has no natural output. In the
previous example, find dutifully searches all the paths and finds all of Marsha's large
files, but it takes no action. For the find command to be useful, you must specify an
expression that causes an action to be taken. For example,
$ find /usr/home -user me -size +50 -print

/usr/home/stuff/bigfile

/usr/home/trash/bigfile.old

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 31

Atmiya Infotech

Hard and Symbolic Links
The ln (link) command creates both hard and symbolic links. When you refer to the file "prufrock"
in the command cat prufrock, UNIX translates the filename into an internal name. Because UNIX
uses a different representation for its internal bookkeeping, you can refer to files by more than
one name. A hard link is an alternative name for a file. Suppose you have a file data and you use
ln to make a hard link to it called data2:
$ ln data data2

$ ls

data data2
The name data2 now refers to exactly the same internal file as data. If you edit data, the changes
will be reflected in data2 and vice versa. Data2 is not a copy of data1 but a different name for the
same file. Suppose that Karen enters:
$ ln memo1 memo2
Karen now has two filenames—memo1 and memo2—that refer to the same file. Since they refer
to the same internal file, they are identical except for their names. If she removes memo1,
memo2 remains because the underlying file that memo2 refers to is still there. UNIX removes the
internal file only after you remove all of the filenames that refer to it, in this case both memo1 and
memo2. You can now see that rather than saying that rm removes a file, it's more accurate to say
that it removes the file's name from the file system. When the last name for a file is gone, UNIX
removes the internal file.
What good are hard links? Sometimes people working together on projects share files. Suppose
that you and Joe work on a report together and must edit the same file. You want changes that
you make to be reflected in Joe's copy automatically, without having Joe copy the file anew each
time you change it. You also want Joe's changes to be reflected in the copy. Instead of trying to
synchronize two separate files, you can make a hard link to Joe's file. Changes he makes will be
reflected in your version and vice versa because you both are working with the same file even
though you use different names for it.
A symbolic link (also known as a symlink) allows you to create an alias for a file, a sort of signpost
in the file system that points to the real file someplace else. Suppose that you frequently look
through your friend Joe's Italian recipes, but you are tired of typing:
$ cat /home/joe/recipes/italian/pizza/quattro_stagione
You could copy his recipes to your home directory, but that would waste disk space and you
would have to remember to check for new recipes and copy those as well. A better solution is to
create a symbolic link in your home directory that points to Joe's directory. You use ln's -s option
to create symbolic links:
$ cd

$ ln -s /home/joe/recipes/italian italian

$ ls italian

linguini pasta_primavera
Your symbolic link italian now points to Joe's recipes, and you can conveniently look at them.
There are some important differences between hard and symbolic links. First, you can't make a
hard link to a directory, as in the example above. Hard links cannot cross disk partitions, and you
can't make a hard link to a file in a network file system. Symbolic links can do all of these jobs.
Hard links must refer to a real file, but symbolic links may point to a file or directory that doesn't
exist. Suppose that you have a symbolic link to your colleague's file
/home/ann/work/project4/memos/paper.ms and she removes it. Your symlink still points to it, but
the file is gone. As a result, commands like ls and cat may print potentially confusing error
messages:
$ ls

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 32

Atmiya Infotech

paper.ms

$ cat paper.ms

cat: paper.ms not found
Why can't cat find paper.ms when ls show that it's there? The confusion arises because ls is
telling you that the symbolic link paper.ms is there, which it is. Cat looks for the real file—the one
the symbolic link points to—and reports an error because Ann removed it.
A final difference is that permission modes on symbolic links are meaningless. UNIX uses the
permissions of the file (to which the link points) to decide whether you can read, write, or execute
the file. For example, if you don't have permission to cat a file, making a symlink to it won't help;
you'll still get a permission denied message from cat.

Chown:
 ownership of file is feature often ignored by many users.
You should know by now that, when file is created, the creator becomes owner (representing the
category u of chmod) of the files, and the group to which the user belongs, becomes to group
owner.
 You must remember at the outset that it is only the owner who can change the major file
attributes, like it’s permission or even ownership. A group owner or others can’t change this
attributes. However, when you copy a file owned by someone else, the ownership of the copy is
transferred to you, and you can then manipulate the attributes the copy at will. This all can done
by chown command.

$ls –l test
 -rwxr----x 1 kumar it 1906 sep 5 23:39 test
$chown guest test
 -rwxr----x 1 guest it 1906 sep 5 23:39 test

lpstat:
 lpstat has a number of options which can provides the
status information of printers and jobs. The –r option shows whether lpsched is running:
lpstat -r
scheduler is running.
Without options, it shows the status of all requests submitted by the user who executed the
command. With the –p option, you can obtained the list of jobs lined up for a specific printer:
lpstat –ppr1
pr1-303 test 34562 feb 9 13:24
pr1-303 test 3455 feb 9 13:29

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 33

Atmiya Infotech

UNIX communication

In a multi-user system, it is often necessary for one user to know what the other is doing.
Communication through the system seems quite natural and necessary.
UNIX communication is tend to use to voice certain views which better than either speech or
paper.
Some of the UNIX tools are as under:

news:

 It is used to display all files that have been created in /usr/news since the last
time the command was executed, so it is also known as the bulletin board.

 e.g.: $ news
 No news

mesg:

 $ mesg n - It prevents other people from writing to our terminal.
 $ mesg y - It enables receipt of messages sent by others.

 write:

 It lets you have a two-way communication with any person who is currently
logged in. One user writes a message and then waits for the reply from the other.

 e.g.: $ write abc
 Hello,
 How are you?
 I am fine.
 Hope we will meet soon.

 If abc is not logged in, the system responds with an error message:

 Write: abc is not logged in

Note: For two users to communicate with each other, both must invoke the write command.

talk:

 This command is an alternative to write. It forms the basis of chat feature. The
advantage of talk over write is that you can easily differentiate between the sent and received
messages. It splits the screen into two horizontal windows; one shows the received data and the
other is used for transmission.

 e.g.: $ talk abc
 Hello,
 How are you?
 I am fine.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 34

Atmiya Infotech

 Hope we will meet soon.

 mail:

 It is used for later viewing, and the user doesn’t need to be logged in. Mail
messages can be saved with or without headers (s & w), and can be replied (r) while viewing it.
We can also forward (m) a received message to another destination. We can delete mail (d) from
the mailbox and again undo deletions (u) before quitting mail.

 Eg: $ mail abc
 Subject: Communication
 Mail Command.

 wall:

 It facilitates the administrator to communicate with all the users constantly. It
addresses all the users simultaneously.

 Eg: # wall
 UNIX seminar is set on the next coming Saturday.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 35

Atmiya Infotech

Chapter: 3 Text editing with vi

VI EDITOR

vi is a full screen text editor available with all the Unix systems. Linux generally uses vim
(vi improved).
Three modes in vi:

 A vi session begin by invoking the command vi with or without a filename

$ vi myfile

~
~
~
~
~
~

You are presented with a full empty screen, each line beginning with a ~(tilde). This
indicates that they are non-existent lines. For text editing, vi uses 24 of the 25 lines that are
normally available in the terminal. The last line is reserved for some commands. This line is also
used by system to display messages. The file name appears in this line with the message
“myfile”[New file]
When you open a file with vi, the cursor is positioned at the top left-hand corner of the screen.
You are said to be in command mode from where you can pass commands to act on the text.

There are three modes in Unix :
• Command mode-where keys are used as command to act upon text.
• Input mode-where any key depressed is entered as text.
• ex mode – where ex mode commands can be entered in the last line of the screen to act

on the text.

Input mode

By default you are command mode. First enter the following command:

:set showmode <enter>

This command displays the mode at the bottom line of the screen.

** In Linux showmode setting is not necessary .vim sets it to this by default.

Before you attempt to enter text into the file , you need to change the default command mode
to an input mode. There are several methods of entering into this mode, depending upon the
type of input you wish to key in, but in every case the mode is terminated by pressing <esc>
key.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 36

Atmiya Infotech

Insertion of text

The simplest type of input is the insertion of text. whether the file contains some text or

not ,when vi is invoked, the cursor is always positioned at the first character of the first line.
To inset the text at this position press I,

The character doesn’t show up on the screen, but pressing this key changes the mode
from command mode to input mode. Further key depression will result in text being entered
and displayed on the screen.
The input mode is terminated by pressing the <Esc> key which takes you back into the
command mode.

You started the insertion with i, which put text at the left of the cursor position. If the i is
invoked with the cursor positioned on existing text, text on it right will be shifted further
without being overwritten.

 The vi editor

 i full-screen<Esc>

 The vi full-screen editor

Append

To append text to the right of the cursor position,

a #existing text will also be shifted right

After you have finished editing press <Esc>

I inserts text at the beginning of a line, while A appends text at the end of the line

 The vi full screen editor

 a, a link of ex<Esc>

 The vi full-screen editor, a link of ex

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 37

Atmiya Infotech

Opening a new line with o

You can also open a new line by positioning the cursor at any point in a line and pressing

o

o

This inserts an empty line below the current line.

vi and ex are one and the same editor

 oIt is due to William joy<Esc>

vi and ex are one and the same editor
It is due to William joy

O opens a line above the current line.

Replacing text

Text is replaced with r, R, s, and S.

To replace one single character by another, use r followed by the character that replaces the
one under the cursor. you can replace a single character only in this way.

 this is vi full-screen editor

 rT

 This is vi full-screen editor

To replace more than one character, use R followed by the text.
This replacement is restricted to the current line only.
The s replaces a single character with text irrespective of its length. s replaces the entire
irrespective of the cursor position.
S replaces the entire line.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 38

Atmiya Infotech

Save and quit

Save and exit can be done using ex mode.

To enter any command in this mode enter a : ,which appear at the lat line of the screen.
To save a file and remain in the editing mode use w (write):

:w <Enter>

“myfile”, 8lines, 231 characters

The message shows the file name along with the number of lines and characters saved.
With w you can optionally specify a file name as well, then the contents separately written to
another file.
:w virani <Enter>

To save and quit the editor use x ;

:x <Enter>

“myfile”, 8lines , 231 characters

$_

It is also possible to abort the editing process and quit the editing mode without saving the
buffer:

:q <Enter>
$_

Save and exit commands:

Command Action
:w Saves file and remains in editing mode
:x Saves file and quits editing mode
:wq Saves file and quits editing mode
:w emp.txt It’s like save as option of windows
:q Quits editing mode when no changes are made
:q! Quits editing mode after abandoning changes
:n1,n2w new.txt writes line n1 to n2 to file new.txt
:.w new.txt writes current line to file new.txt
:$w new.txt writes last line to new.txt
:sh Escape to Unix shell

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 39

Atmiya Infotech

Repeating Text

Suppose we want to insert a series of 10 vsc in one line, so instead of using I and the
entering 10 vsc, we can write,

10ivsc <Esc>

Command mode

Deletion with x

x command deletes the character under the cursor. Move the cursor to the character that

need to be deleted and then press x

The character under the cursor gets deleted and the text on the right shifts left to fill the
space.
4x deletes the current character as well as three characters from the right.
Deletion with dd:

Entire lines can be removed by command dd,

Cursor movement

h(or backspace) Moves the cursor left
l (or spacebar) Moves the cursor right
K Moves the cursor up
J Moves the cursor down

 The word oriented navigation:
B Moves back to beginning of word
E Moves forward to end of word
W Moves forward to beginning of word

A repeat factor can be used.4b takes the cursor four words back.
The beginning or end of line:
To move the first character of a line
0 or | #30| moves cursor to column 30

to move to the end of the line use $

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 40

Atmiya Infotech

paging and scrolling

<ctrl-f> scrolls full page forward

<ctrl-b> scrolls full page backward

<ctrl-d> scrolls half page forward

<ctrl-u> scrolls half page backward

<ctrl-l> redraws the screen

You must be in command mode to use this control keys.

Moving between lines

If you want to the line number of your current cursor position ,press <ctrl-g>.

“script.sh” [modified] line 403 of 541 –74%--

In vim ,in Linux the current line number and column number appears automatically.
If you know the line number you can use G to move cursor to a specific line number.
30G #goes to line number 30

End of file is reached by simply using G

Pattern Search

Lines containing a string can also be located by prefixing the string with / (front slash).To

locate the first occurrence of the string “virani” use,

/virani<Enter>

The cursor will be positioned at the first character of the first occurrence of this pattern.
? searches in the reverse direction.

Repeating the last pattern search:

For repeating search in the direction of the previous search made with / or ? use n and
for repeating the search in the reverse direction, use N

Joining lines:

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 41

Atmiya Infotech

Lines can be joined with J

4j #joins following three lines with the current line

 The last command can be repeated using . (dot)
 To undo last instruction use u
 In vim (Linux) multiple undo and redo is possible with repeat factor

C<ctrl-r> means three redo and 3u means to undo last three actions.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 42

Atmiya Infotech

Chapter: 4 Advance tools

tee:
 Unix provides a feature by which you can save the
standard output in a file, as well as display it on the terminal (or pipe it another process). It is
made possible by the tee command. Technically, it is not a feature of the shell, but a unix
command available in /bin.
 Tee uses standard input and standard output, which means that it can be placed
anywhere in a pipeline. The additional feature it possesses is that it breaks up the input into two
components; one component is saved in a file, and the other is connected to the standard output.
 You can use tee to save the output of the who command in a file, as well as display it:
 $ who | tee user.lst
 kumar ttyo1 may 18 08:33
 guest ttyo2 may 18 09:33
 test ttyo3 may 18 07:33
since tee uses standard output, you can pipe its output to another command, say wc:
 $ who | tee user.lst | wc –l
 3
you can use the device name like /dev/tty as an argument to tee:
 $ who | tee /dev/ tty | wc –l
 kumar ttyo1 may 18 08:33
 guest ttyo2 may 18 09:33
 test ttyo3 may 18 07:33
 3

head:
 Syntax: head - <number of lines> <file name>
 Purpose: Head command is user to display the top most information of the files. If no option is
used it will display the first ten records of the argument file. We can also give the count number to display
the respective number of lines.
 Example: head - 3 abc.txt
 ABC
 PQR
 XYZ

 As shown here it will display first three line of this file.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 43

Atmiya Infotech

tail:

 Syntax: tail - < number of lines> <file name>
 Purpose: As in the case of head it displays the top most lines in the case of tail command it
displays end lines of the file. By default if no number is given it will display the last 10 lines of the file.
 Example: tail – 3 abc.txt
 ROPE
 HOPE
 SHOPE
 As given it will display last three lines of the files.

grep:

Syntax: grep < field name > <file name >
 Purpose: With the help of this command we can get the list of the particular records, which are
similar to the condition given. Grep requires an expression to represent the pattern to be searched for
followed by one or more filenames.
 Example: grep “ sales “ emp.txt

1. Chanchal singhvi | sales
2. Barun sengupta | sales

Syntax: grep –c
Purpose: With the help of this command we can get the number of the records

present in the file as per the field given.
 Example: grep –c “ sales ” emp.txt

 emp.txt 2

Syntax: grep –n
 Purpose: With the help of this command we can get the number of line on which the records exist
and the record.
 Example: grep –c “ sales ” emp.txt

 3: Chanchal singhvi | sales
 10: Barun sengupta | sales

 Syntax: grep –v
 Purpose: It will display the total number of lines containing the record.
 Example: grep –v “ sales ” emp.txt
 Syntax: grep –l
 Purpose: It will display the file names only where the pattern has been found.
 Example: grep –l “manager” *.lst

 desig.lst
 emp.lst

 Syntax: grep –I
 Purpose: This option is used to avoid case sensitiveness of the test and the pattern given as
argument.
 Example: grep –I “agarwal” emp.lst

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 44

Atmiya Infotech

 Sudhir Agarwal

 Syntax: grep –e
 Purpose: With the help of this option we can get the list of the records, which are spelled in similar
manner as the pattern with different order test.
 Example: grep –e “agarwal”

 Sudhir Agarwal
 Anil aggarwal
 V.K. agrawal

egrep: Extending grep

The egrep command extends the grep’s pattern matching capabilities. It offers all the options of
grep,but it’s most useful feature is the facility to specify more than one pattern for search. Each
pattern is separated by a pipe (|)
The regular expressions that we have used in grep can also be used as patterns in egrep. egrep
uses some additional characters , not used by grep.
Expression Significance
ch+ Matches one or more occurrence of character ch
ch? Matches zero or more occurrence of character ch
exp1|exp2 Matches expression exp1 or exp2
The extended set includes two special characters- + and ?. The + matches one or more instances
of the previous characters, while ? matches zero or one occurrence of the previous character.
a+ matches a,aa,aaa etc. while a? matches either nothing or a single a.
Serching for multiple patterns:
We can use egrep for multiple patterns
We can locate both “sengupta” and “dasgupta” from the file.
$ egrep ‘sengupta|dasgupta’ emp.lst
2365|barun sengupta |director|7800
1265|s.n.dasgupta|manager|6500
We can also use:
$ egrep ‘(sen|das)gupta’ emp.lst
2365|barun sengupta |director|7800
1265|s.n.dasgupta|manager|6500

The –f option:

we can take the patterns from the file with the help of –f option.
$ cat pat.txt
sales | personnel |HRD

The file must contain the patterns , suitably delimited(with pipes) in the same way as they are on
the command line.
$ egrep –f pat.txt emp.lst
The command takes the expression from the file pat.txt

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 45

Atmiya Infotech

fgrep:

fgrep accepts multiple patterns both from the command line and a file, but unlike grep and egrep,
doesn’t accept regular expressions. So, if the pattern to search for is a simple string, or a group of
them, fgrep is recommended.
Alternative patterns in fgrep are specified by separating one pattern from another by the newline
character. This is unlike in egrep, which uses the | to delimit two expressions. You may either
specify these patterns in the command line itself
$ cat pat.lst
 sales
 admin
Now you can use fgrep in the same way you used egrep:
 fgrep –f pat.lst emp.lst

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 46

Atmiya Infotech

Chapter: 5 Working with the text files

Sort:

 Syntax: sort < filename>
 Purpose: On giving this command it will display the list in the sorted form. Sorting starts with the
first character of each line and proceeds to the next character only when the characters in two lines are
identical. By default sort records a line starting from the beginning of the line. The sequence of ordering by
the sort commands is

1) White space
2) Numerals
3) Uppercase letters
4) Lowercase letters

Example: sort shortlist

There are two more options for using the sort with different arguments

Sort –t “|” +<no of field to be left> <file name>
 This command will display the list in the sorting order of the second field i.e. the list will be
sorted on the bases of the second field.
E.g.: sort –t “|” + 1 shortlist
Here +1 indicate the shorting should start after skipping the first field.

Sort –t “|” –r +<no of field to be left> <file name>
 It will give the listing in the reverse format.

E.g.: sort –t “|” –r +1 shortlist

uniq:

unique command will remove the duplicate entries.
$ cat dept.data
01|account|1123
02|account|2341
03|admin|2131
04|account|1132
05|sales|4211

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 47

Atmiya Infotech

$ unique dept.data

01|account|1123
02|admin|2131
03|sales|4211

cmp: comparing two files
We may require to know whether the two files are identical or not. cmp(compare) command is
used for the same.
Syntax:
 $ cmp <file1> <file2>
$ cmp note1 note2

The two files are compared byte by byte, and the location of the first mismatch is echoed to the
screen.
cmp with –l option gives detailed list of the byte number and the differing bytes in octal for each
character that differs in the both files:

$ cmp –l note1 note2

3 143 145 # Third character has the ASCII values 143 and 145
6 170 166
8 167 173
If the two files are identical, cmp will display no message but it will return the $ prompt.

comm:
comm. requires two sorted files and compares each line of the file with its corresponding line in
the second.

$ cat note1
c.k.shukla
chanchal sanghvi
s.n.dasgupta
sumit chakrobarty

$ cat note2
barun sengupta
c.k.shukla
anil agrawal
lalit chowdhery
s.n.dasgupta

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 48

Atmiya Infotech

$ comm note1 note2

 barun sengupta
 cc..kk..sshhuukkllaa
 anil agrawal
chanchal sanghvi
 lalit chowdhery
 ss..nn..ddaassgguuppttaa
sumit chakrobarty

The first column contains two lines unique to the first file, while second column shows three lines
unique to the second file. The third column displays two lines common to both the files.

diff:
Syntax: diff <file name 1> <file name 2>
 Purpose: Diff command is used to display the differences present in the two files by
comparing them. It also gives the information of line on which the non-identical data is present,
which can become helpful to males the two files identical.
Diff use certain special symbols and instructions to indicate the changes that are required to make
two files identical.
 Example: diff list 1 list 2

Cut
cut can be used to extract specific columns from the file(such as name-the second field and the
designation-the third field). The names start from column 6 through 32. Use cut with –c option for
cutting columns.
$ cut –c 6-22,24-32 list

The –f option:
$ cut –d\| -f 2,3 list |tee cutlist
 -d is used to specify a delimiter while –f is used for fields.

Paste
It pastes the files vertically.
$ paste list1 list2
By default paste uses the tab character for pasting files, but we can specify a delimiter with –d
option.
$ paste –d\| list1 list2

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 49

Atmiya Infotech

Chapter: 6 Shell Programming

Introduction

You can do many things without having an extensive knowledge of how they actually work. For
example, you can drive a car without understanding the physics of the internal combustion
engine. A lack of knowledge of electronics doesn't prevent you from enjoying music from a CD
player. You can use a UNIX computer without knowing what the shell is and how it works.
However, you will get a lot more out of UNIX if you do.
Three shells are typically available on a UNIX system: Bourne, Korn, and C shells.

• What a shell is

• What a shell does for you

• How a shell relates to the overall system

The Kernel and the Shell

As the shell of a nut provides a protective covering for the kernel inside, a UNIX shell
provides a protective outer covering. When you turn on, or "boot up," a UNIX-based
computer, the program Unix is loaded into the computer's main memory, where it
remains until you shut down the computer. This program, called the kernel, performs
many low-level and system-level functions. The kernel is responsible for sending basic
instructions to the computer's processor. The kernel is also responsible for running and
scheduling processes and for carrying out all input and output. The kernel is the heart of
a UNIX system. There is one and only one kernel.
As you might suspect from the critical nature of the kernel's responsibilities, the
instructions to the kernel are complex and highly technical. To protect the user from the
complexity of the kernel, and to protect the kernel from the shortcomings of the user, a
protective shell is built around the kernel. The user makes requests to a shell, which
interprets them, and passes them on to the kernel. The remainder of this section
explains how this outer layer is built.
Once the kernel is loaded to memory, it is ready to carry out user requests. First, though, a user
must log in and make a request. For a user to log in, however, the kernel must know who the user
is and how to communicate with him. To do this, the kernel invokes two special programs, getty
and login. For every user port—usually referred to as a tty—the kernel invokes the getty program.
This process is called spawning. The getty program displays a login prompt and continuously
monitors the communication port for any type of input that it assumes is a user name.

When getty receives any input, it calls the login program, as shown in Figure 10.2. The login
program establishes the identity of the user and validates his right to log in. The login program
checks the password file. If the user fails to enter a valid password, the port is returned to the
control of a getty. If the user enters a valid password, login passes control by invoking the
program name found in the user's entry in the password file. This program might be a word
processor or a spreadsheet, but it usually is a more generic program called a shell.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 50

Atmiya Infotech

three shells, developed independently, have become a standard part of UNIX. They are

• The Bourne shell, developed by Stephen Bourne

• The Korn shell, developed by David Korn

• The C shell, developed by Bill Joy

This variety of shells enables you to select the interface that best suits your needs or the one with
which you are most familiar.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 51

Atmiya Infotech

The Functions of a Shell

It doesn't matter which of the standard shells you choose, for all three have the same purpose: to
provide a user interface to UNIX. To provide this interface, all three offer the same basic
functions:

• Command line interpretation

• Program initiation

• Input-output redirection

• Pipeline connection

• Substitution of filenames

• Maintenance of variables

• Environment control

• Shell programming

1.Command Line Interpretation

When you log in, starting a special version of a shell called an interactive shell, you see a shell
prompt, usually in the form of a dollar sign ($), a percent sign (%), or a pound sign (#). When you
type a line of input at a shell prompt, the shell tries to interpret it. Input to a shell prompt is
sometimes called a command line. The basic format of a command line is
Command arguments
Command is an executable UNIX command, program, utility, or shell program. The arguments
are passed to the executable. Most UNIX utility programs expect arguments to take the following
form:
options filenames
For example, in the command line
$ ls -l file1 file2
There are three arguments to ls, the first of which is an option, while the last two are file names.
One of the things the shell does for the kernel is to eliminate unnecessary information. For a
computer, one type of unnecessary information is white space; therefore, it is important to know
what the shell does when it sees white space. White space consists of the space character, the
horizontal tab, and the new line character. Consider this example:
$ echo part A part B part C

part A part B part C
Here, the shell has interpreted the command line as the echo command with six arguments and
has removed the whitespace between the arguments. For example, if you were printing headings
for a report and you wanted to keep the whitespace, you would have to enclose the data in
quotation marks, as in
$ echo 'part A part B part C'

part A part B part C

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 52

Atmiya Infotech

The single quotation mark prevents the shell from looking inside the quotes. Now the shell
interprets this line as the echo command with a single argument, which happens to be a string of
characters including whitespace.

2.Program Initiation

When the shell finishes interpreting a command line, it initiates the execution of the requested
program. The kernel actually executes it. To initiate program execution, the shell searches for the
executable file in the directories specified in the PATH environment variable. When it finds the
executable file, a subshell is started for the program to run. You should understand that the
subshell can establish and manipulate its own environment without affecting the environment of
its parent shell. For example, a subshell can change its working directory, but the working
directory of the parent shell remains unchanged when the subshell is finished.

3.Input-output Redirection

 It is the responsibility of the shell to make this happen. The shell does the redirection before it
executes the program. Consider these two examples, which use the wc word count utility on a
data file with 5 lines:
$ wc -l fivelines

5 fivelines

$ wc -l <fivelines

5
This is a subtle difference. In the first example, wc understands that it is to go out and find a file
named fivelines and operate on it. Since wc knows the name of the file it displays it for the user.
In the second example, wc sees only data, and does not know where it came from because the
shell has done the work of locating and redirecting the data to wc, so wc cannot display the file
name.

4.Pipeline Connection

Since pipeline connections are actually a special case of input-output redirection in which the
standard output of one command is piped directly to the standard input of the next command, it
follows that pipelining also happens before the program call is made. Consider this command
line:
$ who | wc -l

5
In the second example, rather than displaying its output on your screen, the shell has directed the
output of who directly to the input of wc.

5.Substitution of Filenames

Metacharacters can be used to reference more than one file in a command line. It is the
responsibility of the shell to make this substitution. The shell makes this substitution before it
executes the program. For example,
$ echo *

file1 file2 file3 file3x file4
Here, the asterisk is expanded to the five filenames, and it is passed to echo as five arguments. If
you wanted to echo an asterisk, we would enclose it in quotation marks.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 53

Atmiya Infotech

6.Maintenance of Variables

The shell is capable of maintaining variables. Variables are places where you can store data for
later use. You assign a value to a variable with an equal (=) sign.
$ LOOKUP=/usr/mydir
Here, the shell establishes LOOKUP as a variable, and assigns it the value /usr/mydir. Later, you
can use the value stored in LOOKUP in a command line by prefacing the variable name with a
dollar sign ($). Consider these examples:
$ echo $LOOKUP

/usr/mydir

$ echo LOOKUP

LOOKUP

7.Environment Control

When the login program invokes your shell, it sets up your environment, which includes your
home directory, the type of terminal you are using, and the path that will be searched for
executable files. The environment is stored in variables called environmental variables. To
change the environment, you simply change a value stored in an environmental variable. For
example, to change the terminal type, you change the value in the TERM variable, as in
$ echo $TERM

vt100

$ TERM=ansi

$ echo $TERM

ansi

Shell programming

You've seen that the shell is used to interpret command lines, maintain variables, and execute
programs. The shell also is a programming language. By combining commands and variable
assignments with flow control and decision-making, you have a powerful programming tool.

Stephen Bourne at Bell Laboratories, where UNIX was originally developed, wrote the Bourne
shell. Because it is found on most UNIX systems, many software developers work under the
assumption that the Bourne shell is available on a UNIX system. This use does not mean that it is
the best shell, but simply that it is the most common. Other shells, most notably the Korn shell,
were written to enhance the Bourne shell, so shell programs written for Bourne run under the
Korn shell. In some literature, the Bourne shell is called the UNIX system Version 7 shell.

The first exposure most people have to the Bourne shell is as an interactive shell. After logging
on the system and seeing any messages from the system administrator, the user sees a shell
prompt. For users other than the super-user, the default prompt for the interactive Bourne shell is
a dollar sign ($). When you see the dollar sign ($), the interactive shell is ready to accept a line of
input, which it interprets. When the super-user logs in, he or she sees the pound sign (#) as a
prompt. It is a reminder that as super-user some of the built-in protections are not available and
that extra care is necessary in this mode.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 54

Atmiya Infotech

NOTE: On UNIX systems the super-user, also referred to as root, is without restriction. The
super-user can write to any directory and can remove any file. File permissions do not apply to
the super-user. The system administrator usually closely holds the password for the super-user.

Variables in Unix:

In Unix there are two types of variables.
System variables: 1.

2. User variables:

1) System Variables:
 The Unix system is controlled by a number of
shell variables that are separately set by the system, some during the
boot sequence, and some after logging in. These variables are called
system variables or environment variables.
 In system variables there are some types of it.

The path variable:
PATH is a variable that instructs the shell about the route it
should follow to locate any executable command. If you wish to
include the directory /home/henry/progs in your search list, you
need to redefine this variable:

PATH=$PATH:/home/henry/progs

The HOME Variable:
When you log in, UNIX normally place you in a directory named
after your login name. This directory is called the home or login directory, and is
available in the variable HOME:

$ echo $HOME
/home/henry

The home directory for a user is set by the pertaining to her in
the file /etc/passwd.

The IFS Variable:

IFS contains a string of characters that are used a s word separators
in the command line. The string normally consists of the space, tab and the newline
characters. All these characters are invisible, but the blank line following it suggests
that the newline character is part of this string. You can confirm the contents of this
variable by taking it octal dump:

$ echo “$IFS” | od –bc
0000000 040 011 012 012
 \t \n \n
0000004

The MAIL Variable:
MAIL determines where all incoming mail addressed to the user is
to be stored. This directory is searched by the shell every time a user logs in. If any
information is found here, the shell informs the user with the familiar message “You
have mail”.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 55

Atmiya Infotech

The SHELL Variable:
SHELL determines the type of shell that a user sees in logging in.
Today, there are a host of shells that accompany any UNIX system, and you can
select the one you like the most. The C shell is known by the program csh, and the
Korn shell by ksh. Linux offers bash, tcsh and pdksh; bash is the standard Linux
shell.
 If you wish to use any of these as the default shell, then the variable
needs to be assigned accordingly. However, this assignment is made by the system
after reading the last field in /etc/passwd. The system administrator usually sets up
your login shell when creating a user account, through he can change it whenever
you make a request.

Theoretically, all shell statements and UNIX commands can be entered in the command line
itself. However, when a group of commands has to be executed regularly, they are better stored
in a file. All such files are called shell scripts, shell programs, m shell procedures. There is
absolutely no restriction on the extension such filenames should have, though it is a universal
convention that the extension .sh be used for shell programs. The following shell script script.sh
has a sequence of three UNIX commands:

$ cat script.sh
 # Sample shell script #Use # to comment lines
 date
 cal 'date "+%m 19%y"'
 echo 'Calendar for the current month shown above'
 You can use the vi' editor to create this script. You can execute this file in two ways. One way is
to use the sh command along with the filename: . sh script.sh Alternatively, you can first use
chmod to make the file executable, and then run it by simply invoking the filename:

$ chmod +x script .sh
$ script .sh # Don't need to use sh here

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 56

Atmiya Infotech

read: Interactive Scripts

 The read statement is the shell's internal tool for taking input from the user, i.e., making scripts
interactive. It is used with one or more variables, and input supplied through the standard input is
read into these variables.
 The script emp .sh uses read to take a search string and filename from the terminal: $ cat empi.
sh
 # Script: empi. sh - Interactive version
 # The pattern and filename to be supplied by the user
 echo "\nEnter-the pattern to be searched: \c" # \n for a newline
 read pname
 echo "\nEnter the file to be used: \c"
 read flname
 echo "\nSearching for $pname from file $f1name\n"
 grep "$pname" $f1name
 echo "\nSe1ected records shown above\n"

If you are using the bash shell in Linux, you can't use the escape sequences \c and \n unless you
use echo with the -e option also.
Single read statement can be used with one or more variables to let you enter multiple
arguments:
read pname f I name

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 57

Atmiya Infotech

COMMAND LINE ARGUMENTS—POSITIONAL PARAMETERS

Shell procedures accept arguments in another situation too—when you specify them in the
command line itself.

When arguments are specified with a shell procedure, they are assigned to certain special
"variables", or rather positional parameters.
The first argument is read by the shell into the parameter $1, the second argument into $2, and
so on. You can't technically call them shell variables because all variables are evaluated with a $
before the variable name. In the case of $1, you really don't have a liable 1 that is evaluated with
$.

$ cat emp2.sh
echo "Program: $0 # $0 contains the program name
The number of arguments specified is $#
The arguments are $*"
 grep "$1" $2
echo "\n job over"
The parameter $* stores the complete set of positional parameters as a single string. $# is set to
the number of arguments specified. This lets you design scripts that check whether the right
number of arguments have been entered. The command itself is stored in the parameter $0.
Invoke this script with the pattern "director" and the filename emp1.lst as the two arguments
$ emp2.sh director emp1.lst
When arguments are specified in this way, the first word (the command itself) is assigned to $0,
the second word (the first argument) to $1, and the third word (the second argument) to $2. You
can use more positional parameters in this way up to $9

Since the script accepts three arguments, how do you search for a multi-word pattern, say "barun
sengupta" from emp2.1st? When the string is quoted, the shell understands it as a single
argument:
$ emp2.sh "barun sengupta" emp2.lst
 Program : emp2.sh
 The number of arguments specified is 2
The arguments are barun sengupta emp2.lst
 2365| barun senauota | director l personnel |11/05/47|7800

if has been set at 2, as you can see above. If you had not used quotes, then the line would have
been printed twice, first for "barun", and then for "sengupta".

 The Parameter $?

The parameter $? stores the exit status of the last command. It has the value 0 if the command
succeeds, and a non-zero value if it fails.
For example, if grep fails to find a pattern, the return value is 1, and if the file scanned is
unreadable in the first place, the return value is 2. In any case, return values exceeding 0 are to
be interpreted as failure of the command.
Try using grep in different ways:
$grep director emp.lst >/dev/null; echo $?
0
$ grep manager emp.lst >/dev/null; echo $?

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 58

Atmiya Infotech

1 # "manager" doesn't exist

$ grep manager emp2.lst >/dev/null; echo $?
grep: can't open emp2.lst
 2
You should note that all assignments to the positional and special parameters are automatically
made by the shell.
 To find out whether a command executed successfully or not, simply use echo $? After
the command. 0 indicates success, other values point to failure.

Shell parameter Significance
$1, $2 etc The positional parameter
$* Complete set of positional parameters as a single string
$# Number of arguments specified in command line
$0 Name of executed command
$? Exit status of last command
$! PID of last background job

THE LOGICAL OPERATORS && AND | |—CONDITIONAL
EXECUTION
 There is no logic built into the script emp1.sh that can prevent display of the message "Selected
records shown above" even if the pattern is not found. That is because the exit status of grep was
not used to control the direction of the program. The shell provides two operators to control
execution of a command depending on the success or failure of the previous command— the &&
and ||. The && operator is used by the shell in the same sense as it is used in C. It delimits two
commands; the second command is executed only when the first succeeds.
 You can use it with the grep command in this way:
$ grep 'director' empl.lst && echo "pattern found in file"
1006lchancha1 sanghvi |director |sales |03/09/38|6700
6521| lalit chowdury |director |marketing |26/09/45|8200
 pattern found in file
 The || operator is used to execute the command following it only when the previous command
fails. If you "grep" a pattern from a file without success, you can notify the failure.
$ grep 'manager' emp2.lst || echo "Pattern not found"
Pattern not found

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 59

Atmiya Infotech

THE if CONDITIONAL

Theif statement, like its counterpart in other programming languages, takes two-way decisions,
depending on the fulfillment of a certain condition. In the shell, the statement uses the following
forms, much like the one used in other languages:

if condition is true
 then

execute commands
else

 execute commands
fi

 Form1

if condition is true
 then
 execute commands
 fi

 Form 2
If evaluates a condition that accompanies its "command line". If the condition is fulfilled

(i.e., returns a true exit status), the sequence of commands following it is executed. Every if has
must have a corresponding fi. The else statement (in Form 1), if present, specifies the action in
case the condition is not fulfilled. This statement is not always required, as shown in Form 2.

What makes shell programming so powerful is that the condition can be a simple one like
comparing two values, or checking the return value of any UNIX program. All UNIX commands
return a value, as we saw with cat and grep. In the next example, grep is first executed, and if
uses its return value to control the program flow:

 $ if grep "director" emp.lst
>then echo "Pattern found - Job Over
>else echo "Pattern not found"
>fi

 9876|jai Sharma|director |production|7000
2365|barun sengupta| director|personnel|7600
 1006lchancha1 sanghvi | director|sales|6500
6521|lalit chowdhery| director|marketing|8000
 Pattern found-job over

Every if must have an accompanying then and fi, and optionally else

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 60

Atmiya Infotech

THE case CONDITIONAL

The case statement is the second conditional offered by the shell. It doesn't have a
parallel in most languages including perl. The statement matches an expression for more
than one alternative, and uses a compact construct to permit multi-way branching. It also
handles string tests, but in a more efficient manner than if. The general syntax of the
case statement is as follows:
 case expression in

 pattern1) execute commands ;;
 pattern2) execute commands ;;

 pattern3) execute commands;;
 esac
case matches the expression first for pattern1, and if successful, executes the commands
associated with it. If it doesn't, then it falls through and matches pattern2, and so on.
Each command list is terminated by a pair of semi-colons, and the entire construct is
closed with esac (reverse of case). Consider a simple example using this construct. You
can devise a script menu.sh, which accepts values from 1 to 5, and performs some action
depending on the number keyed in.
 $ cat menu.sh
 echo " MENU\n
1. List of fi1es\n 2. Processes of user\n 3. Today's Date
 4. Users of system\n 5.Quit to UNIX\nEnter your option: \c"
 read choice
 case "$choice" in
1) ls –l ;;
2) ps -f ;;
3) date ;;
4) who ;;
5) exit # ;; not really required for the last option

The five menu choices are displayed with a multi-line echo statement, case matches the
value of the variable $choice for the strings 1, 2, 3, 4 and 5. It then relates each value to
a command that has to be executed.
 For example, if the user enters a 1, the ls -l command will be executed. Script
termination is achieved by entering 5, or any other value not matched in the program
logic. You can see today's date by choosing the third option: $ menu.sh

MENU
1. List of files
2. Processes of user
3. Today's Date
4. Users of system
5. Quit to UNIX
Enter your option: 3
 Sat Sep 13 16:41:16 1ST 1997

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 61

Atmiya Infotech

The until Loop
An until loop looks like this:

until control command doesn't return true
do

 this
and this
and this
and this

done

The statements within the until loop keep on getting executed till exit status of the

control command remains false (1). When the exit status becomes true (0), the

control passes to the first command follows the body of the until loop (i.e. the first

command after done) There is a minor difference between the working of while and

until loops. The while loop executes till the exit status of the command is true and

terminates when the exit status becomes false.

Unlike this the until loop executes till the exit status of the cont; command is false

and terminates when this status becomes true.

* Prints numbers from 1 to 10 using until

until [$i-gt 10]
do

echo $i
i=expr$i+r

Did you notice the difference in the way the loops have been written in the two
programs given above. The while loop continues its job till the test remains true and
terminates when the test fails. Unlike this, the until loop continues till the test
remains false and terminates when the test becomes true. Apart from this peculiarity
the while and the until loops behave exactly identically.

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 62

Atmiya Infotech

Sleep, wait and null commands:
 Sleep and Wait:- you may occasionally need to introduce some delay in
a shell script to let the user see some message on the screen before the script starts doing
something else. You may also like to make a check regularly(say, once a minute) for an event to
occur(say, for a file to spring into existence). Sleep is a unix command that introduces this delay.
It is used with an argument that specifies the number of seconds for which the shell will pause or
sleep before it resume execution.
 $ sleep 100; echo “100 seconds have elapsed”
The message appears exactly 100 seconds after the commands have been invoked. The special
feature of this command is that it doesn’t incur significant overheads while it is sleeping.
Wait :- wait is a shell built-in that checks whether all background processes have been
completed. This can be quite useful when you have run a job in the background, and now want to
make sure the command is completed so that you can run yet another program. You can use the
wait command to wait for the completion of the last background job with or without the process
PIDs:
 wait #waits for completion of all background processes
 wait 139 #waits for completion of process PID 139

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 63

Atmiya Infotech

Shell Scripts:

1. Make a simple calculator.
2. To display following details in report.

(i) Basic Salary
(ii) HRA (25%)
(iii) DA (10%)
(iv) Gross Salary = Basic Salary + HRA + DA

3. To accept number as command line and display sum of all digit.
4. To sort the content of the file.
5. To accept Invoice number & display other details (Inv-date, Inv-amount, Inv-party) of

Invoice
6. Accept seat no and display other details (stu_name, tot_mark, class) of a

marksheet.

7. Write a script that takes command line argument and reports on whether it is a

directory, a file or something else.
8. Write a script that counts word on several files.
9. Display the information of a user (i.e. user id, group id,default directory etc.)When a

username is entered at the command line
10. Take the filename as a command line argument and check whether it is a file or a

directory as well as check for the read write and execute permissions.
11. If a character is entered through the keyboard. Find out if it is a vowel or a digit.
12. Create a menu as Follows:

Selection Menu
1. List of Users currently logged in
2. Process Status
3. Disk Usage
4. Exit
Enter your choice [1-4]:

 Display the information as per the users selection

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 64

Atmiya Infotech

Question Papers

Shree M. & N. Virani Science College
And

Shree Gyanyagna College of Pure and Applied Science

B.Sc (I.T) Sem-III Preliminary Examination –Oct 2002

Operating System and Unix

Time: 3 Hours Total Marks: 100
Que: 1 Answer the following questions(Any Four) [20]

1. Inter process Communications
2. Functions of the Operating System
3. Features of Unix
4. Virtual Memory
5. Vi editor with different modes

Que:2 [A]Explain the following commands(Any Seven) [14]
1. rlogin
2. chmod
3. sort
4. lp
5. doscp
6. chown
7. ps
8. df
9. split
[B] Write a note on IO management [8]
 [OR]
 Write a note on process management

Que:3 Answer the following questions (Any three) [15]
1. Discuss Piping and redirection in Unix
2. Discuss the use of positional parameters in Unix
3. Explain the loop Structure in shell programming
4. Explain decision making statements in Unix

Que: 4 [A] write a note on (Any Four) [20]
1. Shell variables in Unix
2. Backup and Restore in Unix
3. Head and tail command
4. Mounting and un-mounting a file system in Unix
5. grep command

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 65

Atmiya Infotech

[B] Explain the term (Any three) [3]
1. Process
2. System call
3. Super user
4. Multitasking

Que: 5 write the shell scripts (Any Four) [20]

1. Display the information of a user (i.e. user id, group id,default
directory etc.)When a username is entered at the command line

2. Take the filename as a command line argument and check whether
it is a file or a directory as well as check for the read write and
execute permissions.

3. If a character is entered through the keyboard. Find out if it is a
vowel or a digit.

4. Create a menu as Follows:
Selection Menu

5. List of Users currently logged in
6. Process Status
7. Disk Usage
8. Exit
Enter your choice [1-4]:

 Display the information as per the users selection
 5. In a company an employee is paid as under

If Basic salary is less than Rs. 5000 then HRA=10% of Basic
salary

 DA =50% of BS
If Basic Salary is equal or above Rs.5000 then HRA=Rs.1000,
DA =60% of Basic salary
If basic salary is inputted from the keyboard calculate the gross
salary.

 Gross salary=Basic salary+HRA+DA

 “Yogidham”, Kalawad Road, Rajkot Ph : 572365, 576681 66

	Unix Operating System
	By Chetan Bhojani
	BCA SEM-IV
	Syllabus of UNIX/LINUX
	Features of Unix
	What Is a Command?
	
	The Types of UNIX Files
	File and Directory Names

	Chapter: 1Starting with Unix/Linux
	Login and Logout
	passwd command
	who command
	who am i

	mkdir
	pwd command
	cd command
	rmdir command
	ls command
	ls command with options

	cat command:
	Using cat to create a file

	cp command
	rm command:
	mv command:
	more command:

	Chapter: 2 Understanding process and multi-user
	Environment
	ps command:
	Or Unix Processes:
	Parent and child process:
	Ps command:

	banner :
	cal :
	date:
	chmod:
	chown:
	umask:
	Pr:
	lpstat:
	Telnet:
	lp command:
	ln command
	Hard and Symbolic Links
	Chown:
	lpstat:
	UNIX communication
	news:
	mesg:
	write:
	talk:
	mail:
	wall:

	Chapter: 3 Text editing with vi
	VI EDITOR
	Input mode
	Insertion of text
	Append
	Opening a new line with o
	Replacing text
	Save and quit
	Repeating Text

	Command mode
	Deletion with x
	Cursor movement
	paging and scrolling
	Moving between lines
	Pattern Search

	Chapter: 4 Advance tools
	tee:
	head:
	tail:
	grep:
	egrep: Extending grep
	
	The –f option:

	fgrep:

	Chapter: 5 Working with the text files
	Sort:
	uniq:
	cmp: comparing two files
	comm:
	diff:
	Cut
	Paste

	Chapter: 6 Shell Programming
	Introduction
	The Kernel and the Shell
	The Functions of a Shell
	1.Command Line Interpretation
	2.Program Initiation
	3.Input-output Redirection
	4.Pipeline Connection
	5.Substitution of Filenames
	6.Maintenance of Variables
	7.Environment Control

	Shell programming
	Variables in Unix:
	read: Interactive Scripts
	COMMAND LINE ARGUMENTS—POSITIONAL PARAMETERS
	The Parameter $?

	THE LOGICAL OPERATORS && AND | |—CONDITIONAL EXEC
	THE if CONDITIONAL
	THE case CONDITIONAL
	The until Loop
	Sleep, wait and null commands:

	Shell Scripts:
	Shree Gyanyagna College of Pure and Applied Science
	
	
	
	
	B.Sc \(I.T\) Sem-III Preliminary Examination –�

	Operating System and Unix

